Skip to content
Snippets Groups Projects
Commit 90e5532c authored by Zhefu Li's avatar Zhefu Li
Browse files

Update model.html

parent d86bc151
No related branches found
No related tags found
No related merge requests found
...@@ -66,7 +66,8 @@ ...@@ -66,7 +66,8 @@
<li><a href="#description">General Description of Modeling</a></li> <li><a href="#description">General Description of Modeling</a></li>
<li><a href="#topic1">Compartment Model for Muscone Inhalation</a></li> <li><a href="#topic1">Compartment Model for Muscone Inhalation</a></li>
<li><a href="#topic2">Topic2</a></li> <li><a href="#topic2">Topic2</a></li>
<li><a href="#topic3">Topic3</a></li> <li><a href="#topic3">Ordinary Differential Equation of the signal transduction of the yeast MAPK
pathway</a></li>
<li><a href="#topic4">Topic4</a></li> <li><a href="#topic4">Topic4</a></li>
</ul> </ul>
</div> </div>
...@@ -323,85 +324,85 @@ ...@@ -323,85 +324,85 @@
<button id="Button1" onclick="toggleCodeSnippet()">Expand the code</button> <button id="Button1" onclick="toggleCodeSnippet()">Expand the code</button>
<div id="codeSnippet" class="code-snippet"> <div id="codeSnippet" class="code-snippet">
% Define parameters % Define parameters
Q_inhale = 100; % mg Q_inhale = 100; % mg
k_exhale = 10; k_exhale = 10;
k_perm = 0.005; k_perm = 0.005;
k_adh = 0.001; k_adh = 0.001;
k_diffMC = 0.01; k_diffMC = 0.01;
k_diffLC = 0.05; k_diffLC = 0.05;
k_dist = 0.001; k_dist = 0.001;
k_excrete = 0.05; k_excrete = 0.05;
k_move = 0.02; k_move = 0.02;
% Define the time range % Define the time range
tspan = [0 300]; % From 0 to 5 minutes tspan = [0 300]; % From 0 to 5 minutes
initial_conditions = [0 0 0 0 0]; % The initial condition is 0 initial_conditions = [0 0 0 0 0]; % The initial condition is 0
% solve ODE % solve ODE
[t, y] = ode45(@(t,y) odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, [t, y] = ode45(@(t,y) odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist,
k_excrete, k_move), tspan, initial_conditions); k_excrete, k_move), tspan, initial_conditions);
% calculate V_inhale % calculate V_inhale
V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5));
figure('Position', [100, 100, 1200, 1000]); figure('Position', [100, 100, 1200, 1000]);
% V_inhale(t) % V_inhale(t)
subplot(3,2,1) subplot(3,2,1)
plot(t, V_inhale) plot(t, V_inhale)
title('V_{inhale}(t)') title('V_{inhale}(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('V_{inhale}') ylabel('V_{inhale}')
% Q_A(t) % Q_A(t)
subplot(3,2,2) subplot(3,2,2)
plot(t, y(:,1)) plot(t, y(:,1))
title('Q_A(t)') title('Q_A(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('Q_A') ylabel('Q_A')
% Q_L(t) % Q_L(t)
subplot(3,2,3) subplot(3,2,3)
plot(t, y(:,2)) plot(t, y(:,2))
title('Q_L(t)') title('Q_L(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('Q_L') ylabel('Q_L')
% Q_M(t) % Q_M(t)
subplot(3,2,4) subplot(3,2,4)
plot(t, y(:,3)) plot(t, y(:,3))
title('Q_M(t)') title('Q_M(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('Q_M') ylabel('Q_M')
% Q_C(t) % Q_C(t)
subplot(3,2,5) subplot(3,2,5)
plot(t, y(:,4)) plot(t, y(:,4))
title('Q_C(t)') title('Q_C(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('Q_C') ylabel('Q_C')
% Q_I(t) % Q_I(t)
subplot(3,2,6) subplot(3,2,6)
plot(t, y(:,5)) plot(t, y(:,5))
title('Q_I(t)') title('Q_I(t)')
xlabel('Time (s)') xlabel('Time (s)')
ylabel('Q_I') ylabel('Q_I')
sgtitle('Simulation Results') sgtitle('Simulation Results')
% ODE % ODE
function dydt = odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, function dydt = odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist,
k_excrete, k_move) k_excrete, k_move)
V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5));
dydt = zeros(5,1); dydt = zeros(5,1);
dydt(1) = V_inhale - (k_exhale + k_perm) * y(1); % dQ_A/dt dydt(1) = V_inhale - (k_exhale + k_perm) * y(1); % dQ_A/dt
dydt(2) = k_perm * y(1) - k_diffLC * y(2); % dQ_L/dt dydt(2) = k_perm * y(1) - k_diffLC * y(2); % dQ_L/dt
dydt(3) = 0.0005 * k_adh * V_inhale - k_diffMC * y(3); % dQ_M/dt dydt(3) = 0.0005 * k_adh * V_inhale - k_diffMC * y(3); % dQ_M/dt
dydt(4) = k_diffMC * y(3) + k_diffLC * y(2) - k_dist * y(4) - k_excrete * y(4); % dQ_C/dt dydt(4) = k_diffMC * y(3) + k_diffLC * y(2) - k_dist * y(4) - k_excrete * y(4); % dQ_C/dt
dydt(5) = k_dist * y(4) - k_move * y(5); % dQ_I/dt dydt(5) = k_dist * y(4) - k_move * y(5); % dQ_I/dt
end end
</div> </div>
<script> <script>
function toggleCodeSnippet() { function toggleCodeSnippet() {
...@@ -454,24 +455,21 @@ end ...@@ -454,24 +455,21 @@ end
<div class="row mt-4"> <div class="row mt-4">
<div class="col-lg-12"> <div class="col-lg-12">
<h2 id="topic3"> <h2 id="topic3">
<h2>Topic3</h2> <h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2>
<hr>
<p>Admission to Tsinghua for both undergraduate and graduate schools is extremely competitive. <h3>Model Description</h3>
Undergraduate admissions for domestic students is decided through the gaokao, the Chinese national <p>In our project, we express the musk ketone receptor (GPCR) on the yeast cell membrane. After a
college entrance exam, which allows students to list Tsinghua University among their preferred certain concentration of musk ketone diffuses into the intestine and binds to the receptor, it
college choices. While selectivity varies by province, the sheer number of high school students activates the receptor, which in turn activates the G protein. The G protein dissociates into α and
applying for college each year has resulted in overall acceptance rates far lower than 0.1% of all βγ subunits, with the βγ subunit releasing and activating Ste20 and the scaffold protein Ste5. Ste5
test takers. Admission to Tsinghua's graduate schools is also very competitive. Only about 16% of can undergo oligomerization and other behaviors, recruiting Ste11, Ste7, and Fus3 near the plasma
MBA applicants are admitted each year.</p> membrane. The cascade reaction is initiated by Ste20, and the signal is transmitted along the
<p>Department of Mathematical Sciences Ste11-Ste7-Fus3 cascade. Fus3 activates the transcription factor pFUS1, and the downstream gene is
The Department of Mathematical Sciences (DMS) was established in 1927. LahA, which expresses lactate dehydrogenase LDH, catalyzing the conversion of pyruvate to lactate.
In 1952, Tsinghua DMS was merged with the Peking University Department of Mathematical Sciences. This model simulates the changes in the concentrations and phosphorylation states of molecules in
Then in 1979 it was renamed "Department of Applied Mathematics", and renamed again in 1999 to its the signaling transduction pathway by writing out chemical reactions and converting them into
current title. ordinary differential equations, in order to obtain the quantitative relationship between musk
Tsinghua DMS has three institutes at present, the institute of Pure Mathematics which has 27 faculty ketone activation and lactate secretion. The model includes the following main processes:</p>
members, the Institute of Applied Mathematics and Probability and Statistics which has 27 faculty
members, and the Institute of Computational Mathematics and Operations Research which has 20 faculty
members. There are currently about 400 undergraduate students and 200 graduate students.</p>
</div> </div>
</div> </div>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment