diff --git a/wiki/pages/model.html b/wiki/pages/model.html index 3f33ab38c5970100f9596b6cb55d9ba569cf5998..0414af605b28dd5786c5bbe036869b416a7f9f62 100644 --- a/wiki/pages/model.html +++ b/wiki/pages/model.html @@ -66,7 +66,8 @@ <li><a href="#description">General Description of Modeling</a></li> <li><a href="#topic1">Compartment Model for Muscone Inhalation</a></li> <li><a href="#topic2">Topic2</a></li> - <li><a href="#topic3">Topic3</a></li> + <li><a href="#topic3">Ordinary Differential Equation of the signal transduction of the yeast MAPK + pathway</a></li> <li><a href="#topic4">Topic4</a></li> </ul> </div> @@ -323,85 +324,85 @@ <button id="Button1" onclick="toggleCodeSnippet()">Expand the code</button> <div id="codeSnippet" class="code-snippet"> -% Define parameters -Q_inhale = 100; % mg -k_exhale = 10; -k_perm = 0.005; -k_adh = 0.001; -k_diffMC = 0.01; -k_diffLC = 0.05; -k_dist = 0.001; -k_excrete = 0.05; -k_move = 0.02; - -% Define the time range -tspan = [0 300]; % From 0 to 5 minutes -initial_conditions = [0 0 0 0 0]; % The initial condition is 0 - -% solve ODE -[t, y] = ode45(@(t,y) odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, -k_excrete, k_move), tspan, initial_conditions); - -% calculate V_inhale -V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); - -figure('Position', [100, 100, 1200, 1000]); - -% V_inhale(t) -subplot(3,2,1) -plot(t, V_inhale) -title('V_{inhale}(t)') -xlabel('Time (s)') -ylabel('V_{inhale}') - -% Q_A(t) -subplot(3,2,2) -plot(t, y(:,1)) -title('Q_A(t)') -xlabel('Time (s)') -ylabel('Q_A') - -% Q_L(t) -subplot(3,2,3) -plot(t, y(:,2)) -title('Q_L(t)') -xlabel('Time (s)') -ylabel('Q_L') - -% Q_M(t) -subplot(3,2,4) -plot(t, y(:,3)) -title('Q_M(t)') -xlabel('Time (s)') -ylabel('Q_M') - -% Q_C(t) -subplot(3,2,5) -plot(t, y(:,4)) -title('Q_C(t)') -xlabel('Time (s)') -ylabel('Q_C') - -% Q_I(t) -subplot(3,2,6) -plot(t, y(:,5)) -title('Q_I(t)') -xlabel('Time (s)') -ylabel('Q_I') - -sgtitle('Simulation Results') - -% ODE -function dydt = odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, -k_excrete, k_move) -V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); -dydt = zeros(5,1); -dydt(1) = V_inhale - (k_exhale + k_perm) * y(1); % dQ_A/dt -dydt(2) = k_perm * y(1) - k_diffLC * y(2); % dQ_L/dt -dydt(3) = 0.0005 * k_adh * V_inhale - k_diffMC * y(3); % dQ_M/dt -dydt(4) = k_diffMC * y(3) + k_diffLC * y(2) - k_dist * y(4) - k_excrete * y(4); % dQ_C/dt -dydt(5) = k_dist * y(4) - k_move * y(5); % dQ_I/dt -end + % Define parameters + Q_inhale = 100; % mg + k_exhale = 10; + k_perm = 0.005; + k_adh = 0.001; + k_diffMC = 0.01; + k_diffLC = 0.05; + k_dist = 0.001; + k_excrete = 0.05; + k_move = 0.02; + + % Define the time range + tspan = [0 300]; % From 0 to 5 minutes + initial_conditions = [0 0 0 0 0]; % The initial condition is 0 + + % solve ODE + [t, y] = ode45(@(t,y) odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, + k_excrete, k_move), tspan, initial_conditions); + + % calculate V_inhale + V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); + + figure('Position', [100, 100, 1200, 1000]); + + % V_inhale(t) + subplot(3,2,1) + plot(t, V_inhale) + title('V_{inhale}(t)') + xlabel('Time (s)') + ylabel('V_{inhale}') + + % Q_A(t) + subplot(3,2,2) + plot(t, y(:,1)) + title('Q_A(t)') + xlabel('Time (s)') + ylabel('Q_A') + + % Q_L(t) + subplot(3,2,3) + plot(t, y(:,2)) + title('Q_L(t)') + xlabel('Time (s)') + ylabel('Q_L') + + % Q_M(t) + subplot(3,2,4) + plot(t, y(:,3)) + title('Q_M(t)') + xlabel('Time (s)') + ylabel('Q_M') + + % Q_C(t) + subplot(3,2,5) + plot(t, y(:,4)) + title('Q_C(t)') + xlabel('Time (s)') + ylabel('Q_C') + + % Q_I(t) + subplot(3,2,6) + plot(t, y(:,5)) + title('Q_I(t)') + xlabel('Time (s)') + ylabel('Q_I') + + sgtitle('Simulation Results') + + % ODE + function dydt = odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, + k_excrete, k_move) + V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); + dydt = zeros(5,1); + dydt(1) = V_inhale - (k_exhale + k_perm) * y(1); % dQ_A/dt + dydt(2) = k_perm * y(1) - k_diffLC * y(2); % dQ_L/dt + dydt(3) = 0.0005 * k_adh * V_inhale - k_diffMC * y(3); % dQ_M/dt + dydt(4) = k_diffMC * y(3) + k_diffLC * y(2) - k_dist * y(4) - k_excrete * y(4); % dQ_C/dt + dydt(5) = k_dist * y(4) - k_move * y(5); % dQ_I/dt + end </div> <script> function toggleCodeSnippet() { @@ -454,24 +455,21 @@ end <div class="row mt-4"> <div class="col-lg-12"> <h2 id="topic3"> - <h2>Topic3</h2> - <hr> - <p>Admission to Tsinghua for both undergraduate and graduate schools is extremely competitive. - Undergraduate admissions for domestic students is decided through the gaokao, the Chinese national - college entrance exam, which allows students to list Tsinghua University among their preferred - college choices. While selectivity varies by province, the sheer number of high school students - applying for college each year has resulted in overall acceptance rates far lower than 0.1% of all - test takers. Admission to Tsinghua's graduate schools is also very competitive. Only about 16% of - MBA applicants are admitted each year.</p> - <p>Department of Mathematical Sciences - The Department of Mathematical Sciences (DMS) was established in 1927. - In 1952, Tsinghua DMS was merged with the Peking University Department of Mathematical Sciences. - Then in 1979 it was renamed "Department of Applied Mathematics", and renamed again in 1999 to its - current title. - Tsinghua DMS has three institutes at present, the institute of Pure Mathematics which has 27 faculty - members, the Institute of Applied Mathematics and Probability and Statistics which has 27 faculty - members, and the Institute of Computational Mathematics and Operations Research which has 20 faculty - members. There are currently about 400 undergraduate students and 200 graduate students.</p> + <h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2> + + <h3>Model Description</h3> + <p>In our project, we express the musk ketone receptor (GPCR) on the yeast cell membrane. After a + certain concentration of musk ketone diffuses into the intestine and binds to the receptor, it + activates the receptor, which in turn activates the G protein. The G protein dissociates into α and + βγ subunits, with the βγ subunit releasing and activating Ste20 and the scaffold protein Ste5. Ste5 + can undergo oligomerization and other behaviors, recruiting Ste11, Ste7, and Fus3 near the plasma + membrane. The cascade reaction is initiated by Ste20, and the signal is transmitted along the + Ste11-Ste7-Fus3 cascade. Fus3 activates the transcription factor pFUS1, and the downstream gene is + LahA, which expresses lactate dehydrogenase LDH, catalyzing the conversion of pyruvate to lactate. + This model simulates the changes in the concentrations and phosphorylation states of molecules in + the signaling transduction pathway by writing out chemical reactions and converting them into + ordinary differential equations, in order to obtain the quantitative relationship between musk + ketone activation and lactate secretion. The model includes the following main processes:</p> </div> </div>