Skip to content
Snippets Groups Projects
Commit e0fe97da authored by Zhefu Li's avatar Zhefu Li
Browse files

Update model.html

parent 9934b8b3
No related branches found
No related tags found
No related merge requests found
Pipeline #498265 passed
......@@ -88,6 +88,15 @@
overflow-x: auto;
/* 允许水平滚动 */
}
.col-lg-12 a {
color: #fa8072;
text-decoration: none;
transition: color 0.3s ease;
}
.col-lg-12 a:hover {
color: #ff6347;
text-decoration: underline;
}
</style>
</head>
......@@ -138,7 +147,7 @@
</div>
<div class="image-container">
<img src="https://static.igem.wiki/teams/5187/wiki-model-fig/introduction.png" alt="introduction_figure"
class="shadowed-image">
class="shadowed-image" style="width: 80%; max-width: 800px;">
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 1 General Description of Model</p>
</div>
......@@ -148,7 +157,7 @@
<h2 id="topic1">
<h2>Compartment Model for Muscone Inhalation</h2>
<hr>
<h3>Model Description</h3>
<h3>1.Model Description</h3>
<p>The main focus of our project is the use of muscone as a signaling molecule to activate engineered
yeast in the gut for therapeutic purposes. Therefore, it is crucial to provide a quantitative
description and computational support for the diffusion of muscone in the body. This model describes
......@@ -188,7 +197,7 @@
<li><strong>Compartment 4</strong> (Target Intestine, \(I\)): \(Q_I(t)\) represents the amount of
muscone in the intestine(\(\text{mg}\)).</li>
<p></p>
<h3>Initial Settings and Assumptions</h3>
<h3>2. Initial Settings and Assumptions</h3>
<p>At \(t=0\), the amount of muscone in all compartments is \(0\).</p>
<p>Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is
assumed to be \(100\text{mg}\). Only \(0.5\%\) of muscone enters the systemic circulation through
......@@ -196,7 +205,7 @@
synthesize lactate, we only consider the metabolism and excretion of muscone in the systemic
circulation. We only focus on the short-term process of muscone appearing in the intestine from
scratch, and the subsequent process of reaching a certain concentration can be ignored.</p>
<h3>Model Equations</h3>
<h3>3. Model Equations</h3>
<h4>Inhalation Equation for Muscone</h4>
......@@ -323,7 +332,7 @@
\text{min}^{-1} \)
</p>
<h3>System of Equations:</h3>
<h3>4. System of Equations:</h3>
<p>In summary, we can write a system of ordinary differential equations and import it into MATLAB for
simulation:</p>
......@@ -469,7 +478,7 @@ end</div>
prepare the three-dimensional molecular model of the research object. In this study, our goal is
to simulate the interaction between muscone and the olfactory receptor Or5an6 (MOR215-1).</li>
</ul>
<h4>1. Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4>
<h4>Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4>
<ul>
<li><strong>Muscone</strong>:</li>
......@@ -578,7 +587,7 @@ ALQRCKNKCFSQCHC</div>
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 6 Protein structure of MOR215-1
</p>
<h4>2. System Preparation:</h4>
<h4>System Preparation:</h4>
<ul>
<li>To study how muscone binds to the receptor, molecular docking tools such as AutoDock and Vina
are used to determine potential binding conformations and obtain docking data:
......@@ -676,7 +685,7 @@ out=muscure.pdbqt</div>
</li>
</ul>
<h3>2. Force field parameterization</h3>
<h4>1. Select Force Field:</h4>
<h4>Select Force Field:</h4>
<ul>
<li>To perform molecular dynamics simulations, it is necessary to choose an appropriate molecular
force field to describe the interactions between molecules within the system. CHARMM36 was
......@@ -684,7 +693,7 @@ out=muscure.pdbqt</div>
due to the absence of direct parameters for musk ketone in existing force fields, custom
parameters need to be generated to supplement it.</li>
</ul>
<h4>2. Generate Force Field Parameters:</h4>
<h4>Generate Force Field Parameters:</h4>
<ul>
<li>Use Avogadro to convert to <code>.mol2</code> format, adjust file information, and then use the
software <a href="https://cgenff.com/">CGenFF</a> to generate its CHARMM36 force field parameter
......@@ -694,7 +703,7 @@ out=muscure.pdbqt</div>
</ul>
<pre><code>perl sort_mol2_bonds.pl MUS.mol2 MUS_fix.mol2</code></pre>
<h3>3. Preprocessing</h3>
<h4>1. Build the system:</h4>
<h4>Build the system:</h4>
<ul>
<li>Generate the topology file <code>MOR_processed.gro</code> for the receptor using GROMACS's
<code>pdb2gmx</code> command.
......@@ -706,7 +715,7 @@ out=muscure.pdbqt</div>
<pre><code>python cgenff_charmm2gmx_py3_nx2.py MUS MUS_fix.mol2 MUS.str charmm36-jul2022.ff</code></pre>
</ul>
<h4>2. Merge the system:</h4>
<h4>Merge the system:</h4>
<ul>
<li>Prepare the complete solvent system required for simulations using the <code>editconf</code> and
<code>solvate</code> commands, merging the topology files of muscone <code>mus.gro</code> and
......@@ -729,7 +738,7 @@ SOL 31227
CL 9</code></pre>
</ul>
<h4>3. Energy minimization:</h4>
<h4>Energy minimization:</h4>
<ul>
<li>Perform energy minimization on the overall system to eliminate unreasonable conflicts in the
initial geometry. Achieve rapid convergence of energy through the gradient descent algorithm and
......@@ -756,7 +765,7 @@ dit xvg_show -f potential.xvg</code></pre>
Minimization</p>
</ul>
<h3>4. Molecular Dynamics Simulation</h3>
<h4>1. System Equilibration:</h4>
<h4>System Equilibration:</h4>
<ul>
<li>To achieve thermal and mechanical equilibrium of the system, simulations are conducted in two
stages: NVT (constant temperature) and NPT (constant pressure) equilibration. The system
......@@ -793,7 +802,7 @@ dit xvg_show -f temperature.xvg</code></pre>
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 11 Curve of the density over time
</p>
<h4>2. Production Simulation:</h4>
<h4>Production Simulation:</h4>
<ul>
<li>Under the conditions of equilibrium, a long-term production simulation is conducted. This
simulation observes the time evolution characteristics of the dynamic interactions between
......@@ -828,7 +837,7 @@ gmx mdrun -deffnm md_0_10</code></pre>
PyMOL.</li>
</ul>
<h4>1. Trajectory Analysis:</h4>
<h4>Trajectory Analysis:</h4>
<p>To gain deeper insights into the interactions between muscone and the receptor, visualization tools
are used to make the simulation process intuitive, identifying key interaction sites and structural
......@@ -882,7 +891,7 @@ gmx trjconv -s md_0_10.tpr -f md_0_10_fit.xtc -o traj.pdb -dt 10
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 15 Trajectory Analysis
</p>
<h4>2. RMSD (Root Mean Square Deviation) Analysis</h4>
<h4>RMSD (Root Mean Square Deviation) Analysis</h4>
<ul>
<li>RMSD provides a fundamental metric for measuring structural deviation during the simulation
......@@ -921,7 +930,7 @@ xmgrace rmsd_mus.xvg</code></pre>
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 16 RMSD Analysis
</p>
<h4>3. Radius of Gyration (Rg) Calculation</h4>
<h4>Radius of Gyration (Rg) Calculation</h4>
<ul>
<li>The radius of gyration (Rg) is used to assess the compactness of a protein and is an important
......@@ -946,7 +955,7 @@ xmgrace gyrate.xvg</code></pre>
</div>
<p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 17 Radius of Gyration Calculation
</p>
<h4>4. Protein-Ligand Interaction Energy</h4>
<h4>Protein-Ligand Interaction Energy</h4>
<ul>
<li>By calculating the Coulomb and Lennard-Jones interaction energies within the system, the binding
......@@ -989,7 +998,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
<h2 id="topic3">
<h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2>
<hr>
<h3>Model Description</h3>
<h3>1. Model Description</h3>
<p>In our project, we express the muscone receptor (GPCR) on the yeast cell membrane. After a
certain concentration of muscone diffuses into the intestine and binds to the receptor, it
activates the receptor, which in turn activates the G protein. The G protein dissociates into α and
......@@ -1025,7 +1034,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
<img src="https://static.igem.wiki/teams/5187/wiki-model-fig/mapk.png" alt="MAPK Pathway"
class="shadowed-image" style="width: 50%; max-width: 500px;">
</div>
<h3>Basic Assumptions</h3>
<h3>2. Basic Assumptions</h3>
<ol>
<li>Since the model only simulates the signal transduction shortly after muscone activation, it
does not consider protein synthesis and degradation, assuming that the concentrations of each
......@@ -1036,7 +1045,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
factors.</li>
</ol>
<h3>Model Equations</h3>
<h3>3. Model Equations</h3>
<h4>Activation of muscone Receptor</h4>
<strong>Reactions</strong>:
<div>
......@@ -1848,9 +1857,9 @@ hold off;</div>
<div class="row mt-4">
<div class="col-lg-12">
<h2 id="topic4">
<h2>lactate Absorption Model</h2>
<h2>Lactate Absorption Model</h2>
<hr>
<h3>Model Description</h3>
<h3>1. Model Description</h3>
<p>
Our project alleviates IBD symptoms by secreting lactate in the intestine to weaken
autoimmunity, but it may face two aspects of doubt: first, why can't lactate or lactate
......@@ -1862,7 +1871,7 @@ hold off;</div>
regulate treatment time and prevent acidosis.
</p>
<h3>Basic Assumptions</h3>
<h3>2. Basic Assumptions</h3>
<ol>
<li>Only the absorption process of lactate is described, without considering other effects of
lactate on the human body.</li>
......@@ -1872,7 +1881,7 @@ hold off;</div>
secrete a total amount of lactate \(a\) within time \(t_0\), secreting \(\frac{a}{n}\) of
lactate in the time interval \(\frac{t_0}{n}\).</li>
</ol>
<h3>Model Equation</h3>
<h3>3. Model Equation</h3>
<p>
According to Fick's law :
</p>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment