From e0fe97daa1288fd40d6602f11e535d4388bacd1a Mon Sep 17 00:00:00 2001
From: Zhefu Li <zf-li23@mails.tsinghua.edu.cn>
Date: Tue, 1 Oct 2024 19:22:50 +0000
Subject: [PATCH] Update model.html

---
 wiki/pages/model.html | 59 +++++++++++++++++++++++++------------------
 1 file changed, 34 insertions(+), 25 deletions(-)

diff --git a/wiki/pages/model.html b/wiki/pages/model.html
index 2ffceb0b..7edd52c7 100644
--- a/wiki/pages/model.html
+++ b/wiki/pages/model.html
@@ -88,6 +88,15 @@
             overflow-x: auto;
             /* 允许水平滚动 */
         }
+        .col-lg-12 a {
+        color: #fa8072;
+        text-decoration: none;
+        transition: color 0.3s ease;
+    }
+    .col-lg-12 a:hover {
+        color: #ff6347;
+        text-decoration: underline;
+    }  
     </style>
 </head>
 
@@ -138,7 +147,7 @@
         </div>
         <div class="image-container">
             <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/introduction.png" alt="introduction_figure"
-                class="shadowed-image">
+                class="shadowed-image" style="width: 80%; max-width: 800px;">
         </div>
         <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 1 General Description of Model</p>
 </div>
@@ -148,7 +157,7 @@
             <h2 id="topic1">
                 <h2>Compartment Model for Muscone Inhalation</h2>
                 <hr>
-                <h3>Model Description</h3>
+                <h3>1.Model Description</h3>
                 <p>The main focus of our project is the use of muscone as a signaling molecule to activate engineered
                     yeast in the gut for therapeutic purposes. Therefore, it is crucial to provide a quantitative
                     description and computational support for the diffusion of muscone in the body. This model describes
@@ -188,7 +197,7 @@
                 <li><strong>Compartment 4</strong> (Target Intestine, \(I\)): \(Q_I(t)\) represents the amount of
                     muscone in the intestine(\(\text{mg}\)).</li>
                 <p></p>
-                <h3>Initial Settings and Assumptions</h3>
+                <h3>2. Initial Settings and Assumptions</h3>
                 <p>At \(t=0\), the amount of muscone in all compartments is \(0\).</p>
                 <p>Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is
                     assumed to be \(100\text{mg}\). Only \(0.5\%\) of muscone enters the systemic circulation through
@@ -196,7 +205,7 @@
                     synthesize lactate, we only consider the metabolism and excretion of muscone in the systemic
                     circulation. We only focus on the short-term process of muscone appearing in the intestine from
                     scratch, and the subsequent process of reaching a certain concentration can be ignored.</p>
-                <h3>Model Equations</h3>
+                <h3>3. Model Equations</h3>
 
                 <h4>Inhalation Equation for Muscone</h4>
 
@@ -323,7 +332,7 @@
                     \text{min}^{-1} \)
                 </p>
 
-                <h3>System of Equations:</h3>
+                <h3>4. System of Equations:</h3>
 
                 <p>In summary, we can write a system of ordinary differential equations and import it into MATLAB for
                     simulation:</p>
@@ -469,7 +478,7 @@ end</div>
                         prepare the three-dimensional molecular model of the research object. In this study, our goal is
                         to simulate the interaction between muscone and the olfactory receptor Or5an6 (MOR215-1).</li>
                 </ul>
-                <h4>1. Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4>
+                <h4>Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4>
 
                 <ul>
                     <li><strong>Muscone</strong>:</li>
@@ -578,7 +587,7 @@ ALQRCKNKCFSQCHC</div>
                 </div>
                 <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 6 Protein structure of MOR215-1
                 </p>
-                <h4>2. System Preparation:</h4>
+                <h4>System Preparation:</h4>
                 <ul>
                     <li>To study how muscone binds to the receptor, molecular docking tools such as AutoDock and Vina
                         are used to determine potential binding conformations and obtain docking data:
@@ -676,7 +685,7 @@ out=muscure.pdbqt</div>
                     </li>
                 </ul>
                 <h3>2. Force field parameterization</h3>
-                <h4>1. Select Force Field:</h4>
+                <h4>Select Force Field:</h4>
                 <ul>
                     <li>To perform molecular dynamics simulations, it is necessary to choose an appropriate molecular
                         force field to describe the interactions between molecules within the system. CHARMM36 was
@@ -684,7 +693,7 @@ out=muscure.pdbqt</div>
                         due to the absence of direct parameters for musk ketone in existing force fields, custom
                         parameters need to be generated to supplement it.</li>
                 </ul>
-                <h4>2. Generate Force Field Parameters:</h4>
+                <h4>Generate Force Field Parameters:</h4>
                 <ul>
                     <li>Use Avogadro to convert to <code>.mol2</code> format, adjust file information, and then use the
                         software <a href="https://cgenff.com/">CGenFF</a> to generate its CHARMM36 force field parameter
@@ -694,7 +703,7 @@ out=muscure.pdbqt</div>
                 </ul>
                 <pre><code>perl sort_mol2_bonds.pl MUS.mol2 MUS_fix.mol2</code></pre>
                 <h3>3. Preprocessing</h3>
-                <h4>1. Build the system:</h4>
+                <h4>Build the system:</h4>
                 <ul>
                     <li>Generate the topology file <code>MOR_processed.gro</code> for the receptor using GROMACS's
                         <code>pdb2gmx</code> command.
@@ -706,7 +715,7 @@ out=muscure.pdbqt</div>
                     <pre><code>python cgenff_charmm2gmx_py3_nx2.py MUS MUS_fix.mol2 MUS.str charmm36-jul2022.ff</code></pre>
                 </ul>
 
-                <h4>2. Merge the system:</h4>
+                <h4>Merge the system:</h4>
                 <ul>
                     <li>Prepare the complete solvent system required for simulations using the <code>editconf</code> and
                         <code>solvate</code> commands, merging the topology files of muscone <code>mus.gro</code> and
@@ -729,7 +738,7 @@ SOL         31227
 CL               9</code></pre>
                 </ul>
 
-                <h4>3. Energy minimization:</h4>
+                <h4>Energy minimization:</h4>
                 <ul>
                     <li>Perform energy minimization on the overall system to eliminate unreasonable conflicts in the
                         initial geometry. Achieve rapid convergence of energy through the gradient descent algorithm and
@@ -756,7 +765,7 @@ dit xvg_show -f potential.xvg</code></pre>
                         Minimization</p>
                 </ul>
                 <h3>4. Molecular Dynamics Simulation</h3>
-                <h4>1. System Equilibration:</h4>
+                <h4>System Equilibration:</h4>
                 <ul>
                     <li>To achieve thermal and mechanical equilibrium of the system, simulations are conducted in two
                         stages: NVT (constant temperature) and NPT (constant pressure) equilibration. The system
@@ -793,7 +802,7 @@ dit xvg_show -f temperature.xvg</code></pre>
                 </div>
                 <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 11 Curve of the density over time
                 </p>
-                <h4>2. Production Simulation:</h4>
+                <h4>Production Simulation:</h4>
                 <ul>
                     <li>Under the conditions of equilibrium, a long-term production simulation is conducted. This
                         simulation observes the time evolution characteristics of the dynamic interactions between
@@ -828,7 +837,7 @@ gmx mdrun -deffnm md_0_10</code></pre>
                         PyMOL.</li>
                 </ul>
 
-                <h4>1. Trajectory Analysis:</h4>
+                <h4>Trajectory Analysis:</h4>
 
                 <p>To gain deeper insights into the interactions between muscone and the receptor, visualization tools
                     are used to make the simulation process intuitive, identifying key interaction sites and structural
@@ -882,7 +891,7 @@ gmx trjconv -s md_0_10.tpr -f md_0_10_fit.xtc -o traj.pdb -dt 10
                 </div>
                 <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 15 Trajectory Analysis
                 </p>
-                <h4>2. RMSD (Root Mean Square Deviation) Analysis</h4>
+                <h4>RMSD (Root Mean Square Deviation) Analysis</h4>
 
                 <ul>
                     <li>RMSD provides a fundamental metric for measuring structural deviation during the simulation
@@ -921,7 +930,7 @@ xmgrace rmsd_mus.xvg</code></pre>
                 </div>
                 <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 16 RMSD Analysis
                 </p>
-                <h4>3. Radius of Gyration (Rg) Calculation</h4>
+                <h4>Radius of Gyration (Rg) Calculation</h4>
 
                 <ul>
                     <li>The radius of gyration (Rg) is used to assess the compactness of a protein and is an important
@@ -946,7 +955,7 @@ xmgrace gyrate.xvg</code></pre>
                 </div>
                 <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 17 Radius of Gyration Calculation
                 </p>
-                <h4>4. Protein-Ligand Interaction Energy</h4>
+                <h4>Protein-Ligand Interaction Energy</h4>
 
                 <ul>
                     <li>By calculating the Coulomb and Lennard-Jones interaction energies within the system, the binding
@@ -989,7 +998,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
             <h2 id="topic3">
                 <h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2>
                 <hr>
-                <h3>Model Description</h3>
+                <h3>1. Model Description</h3>
                 <p>In our project, we express the muscone receptor (GPCR) on the yeast cell membrane. After a
                     certain concentration of muscone diffuses into the intestine and binds to the receptor, it
                     activates the receptor, which in turn activates the G protein. The G protein dissociates into α and
@@ -1025,7 +1034,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
                     <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/mapk.png" alt="MAPK Pathway"
                         class="shadowed-image" style="width: 50%; max-width: 500px;">
                 </div>
-                <h3>Basic Assumptions</h3>
+                <h3>2. Basic Assumptions</h3>
                 <ol>
                     <li>Since the model only simulates the signal transduction shortly after muscone activation, it
                         does not consider protein synthesis and degradation, assuming that the concentrations of each
@@ -1036,7 +1045,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre>
                         factors.</li>
                 </ol>
 
-                <h3>Model Equations</h3>
+                <h3>3. Model Equations</h3>
                 <h4>Activation of muscone Receptor</h4>
                 <strong>Reactions</strong>:
                 <div>
@@ -1848,9 +1857,9 @@ hold off;</div>
     <div class="row mt-4">
         <div class="col-lg-12">
             <h2 id="topic4">
-                <h2>lactate Absorption Model</h2>
+                <h2>Lactate Absorption Model</h2>
                 <hr>
-                <h3>Model Description</h3>
+                <h3>1. Model Description</h3>
                 <p>
                     Our project alleviates IBD symptoms by secreting lactate in the intestine to weaken
                     autoimmunity, but it may face two aspects of doubt: first, why can't lactate or lactate
@@ -1862,7 +1871,7 @@ hold off;</div>
                     regulate treatment time and prevent acidosis.
                 </p>
 
-                <h3>Basic Assumptions</h3>
+                <h3>2. Basic Assumptions</h3>
                 <ol>
                     <li>Only the absorption process of lactate is described, without considering other effects of
                         lactate on the human body.</li>
@@ -1872,7 +1881,7 @@ hold off;</div>
                         secrete a total amount of lactate \(a\) within time \(t_0\), secreting \(\frac{a}{n}\) of
                         lactate in the time interval \(\frac{t_0}{n}\).</li>
                 </ol>
-                <h3>Model Equation</h3>
+                <h3>3. Model Equation</h3>
                 <p>
                     According to Fick's law :
                 </p>
-- 
GitLab