| [Part 1](link to part) | Part Name | Type | <SequenceDialogsequence="aga"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Iulia Beres | Module | <DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/><br><DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/> |
| [Part 1](link to part) | Part Name | Type | <SequenceDialogsequence="aga"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Iulia Beres | Module | <DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/><br><DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/> |
| [Part 1](link to part) | Part Name | Type | <SequenceDialogsequence="aga"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Iulia Beres | Module | <DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/><br><DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/> |
| [BBa_K4665001](http://parts.igem.org/Part:BBa_K4665001) | INPN | Basic Part | <SequenceDialogsequence="atgaaatacctgctgccgaccgctgctgctggtctgctgctcctcgctgcccagccggcgatggccaccctggataaagcactggttctgcgtacctgtgccaataatatggcagatcattgtggtctgatttggcctgcaagcggcaccgttgaaagccgttattggcagagcacccgtcgtcatgaaaatggtctggttggtctgctgtggggtgcaggcaccagcgcatttctgagcgttcatgcagatgcacgttggattgtttgtgaagttgcagttgcagatattatcagcctggaagaacctggtatggttaaatttccgcgtgccgaagttgttcatgttggtgatcgtattagcgcaagccattttatcagcgcacgtcaggcagatccggcaagcaccagcacctcaaccagcaccagtacactgaccccgatgccgaccgcaattccgacaccgatgcctgcagttgccagcgttaccctgccggttgcagaacaggcacgtcatgaagtttttgatgttgcaagcgttagcgcagcagcagcaccggttaatacactgccggttaccacaccgcagaatctgcagaccgcaacctatggtagcaccctgagcggtgataatcattcacgtctgattgcaggttatggcagcaatgaaaccgcaggtaatcatagcgatctgatt"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Fien Eickmans | Module 1: SIMD | <DialogReferencedisplayText="Hui, C. et al. (April 9, 2018)"mainText=" Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineering cells in mice. Scientific Reports 8(5685). https://doi.org/10.1038/s41598-018-24134-3"/><br><DialogReferencedisplayText="Singh, P., et al. (2013)"mainText=" Effect of signal peptide on stability and folding of Escherichia coli thioredoxin. PloS one, 8(5), e63442. https://doi.org/10.1371/journal.pone.0063442"/><br><DialogReferencedisplayText="Zhu, Y., et al. (December 6, 2021)"mainText=" Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralisation. Synthetic and Systems biotechnology, 7(1): 460-473. https://doi.org/10.1016%2Fj.synbio.2021.11.008"/> |
| [BBa_K4665120](http://parts.igem.org/Part:BBa_K4665120) | SazCa | Basic Part | <SequenceDialogsequence="gccgaggtccaccactggtcgtacgagggcgagaacggtccggaaaactgggccaagctgaacccggaatacttctggtg<br>caacctgaagaaccagtcgccagtggacatcagcgacaactacaaggtgcacgccaagctggaaaagctgcacatcaact<br>acaacaaggcggtcaacccggaaatcgtgaacaacggccacaccatccaggtgaacgtgctggaagatttcaaactgaac<br>atcaagggcaaagagtaccacctgaagcagttccacttccatgcgccaagcgagcacaccgtgaacggcaagtactaccc<br>gctggaaatgcacctggtgcacaaggacaaggacggcaacatcgccgtgatcggcgtgttcttcaaagaaggcaaggcga<br>accccgagctggacaaggtgttcaagaacgccctgaaagaagagggcagcaaggtcttcgacggcagcatcaacatcaac<br>gccctgctgccaccagtgaagaactactacacctacagcggcagcctgaccaccccaccgtgcaccgaaggcgtgctgtg<br>gatcgtgctgaagcagccgatcaccgccagcaagcagcagatcgagctgttcaagagcatcatgaagcacaacaacaacc<br>gtccgacccaaccgatcaacagccgctacatcctggaaagcaaccaccaccaccaccaccactga"/> | <v-chip color="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Fien Eickmans | Module 1: SIMD | <DialogReferencedisplayText="Anbu, P. et al. (March 1, 2016)"mainText=" Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5(250). https://doi.org/10.1186/s40064-016-1869-2"/><br><DialogReferencedisplayText="Chaparro-Acuña, S.P., et al. (June, 2018)"mainText=" Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agronómica 67(2). https://doi.org/10.15446/acag.v67n2.66109"/><br><DialogReferencedisplayText="De Luca, V. et al. (March 15, 2013)"mainText=" An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorganic & Medicinal Chemistry Letters, 21(6): 1465.1469. https://doi.org/10.1016/j.bmc.2012.09.047"/><br><DialogReferencedisplayText="De Simone, G., et al. (May 1, 2015)"mainText=" Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic & Medicinal Chemistry Letters, 1;25(9): 2002-2006. https://doi.org/10.1016/j.bmcl.2015.02.068"/><br><DialogReferencedisplayText="Jo, B.H. (October 3, 2013)"mainText=" Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02400-13"/> |
| [BBa_K4665175](http://parts.igem.org/Part:BBa_K4665175) | G4S linker | Basic Part | <SequenceDialogsequence="atgaaatacctgctgccgaccgctgctgctggtctgctgctcctcgctgcccagccggcgatggccaccctggataaagcactggttctgcgtacctgtgccaataatatggcagatcattgtggtctgatttggcctgcaagcggcaccgttgaaagccgttattggcagagcacccgtcgtcatgaaaatggtctggttggtctgctgtggggtgcaggcaccagcgcatttctgagcgttcatgcagatgcacgttggattgtttgtgaagttgcagttgcagatattatcagcctggaagaacctggtatggttaaatttccgcgtgccgaagttgttcatgttggtgatcgtattagcgcaagccattttatcagcgcacgtcaggcagatccggcaagcaccagcacctcaaccagcaccagtacactgaccccgatgccgaccgcaattccgacaccgatgcctgcagttgccagcgttaccctgccggttgcagaacaggcacgtcatgaagtttttgatgttgcaagcgttagcgcagcagcagcaccggttaatacactgccggttaccacaccgcagaatctgcagaccgcaacctatggtagcaccctgagcggtgataatcattcacgtctgattgcaggttatggcagcaatgaaaccgcaggtaatcatagcgatctgattggaggaggaggtagtgccgaggtccaccactggtcgtacgagggcgagaacggtccggaaaactgggccaagctgaacccggaatacttctggtgcaacctgaagaaccagtcgccagtggacatcagcgacaactacaaggtgcacgccaagctggaaaagctgcacatcaactacaacaaggcggtcaacccggaaatcgtgaacaacggccacaccatccaggtgaacgtgctggaagatttcaaactgaacatcaagggcaaagagtaccacctgaagcagttccacttccatgcgccaagcgagcacaccgtgaacggcaagtactacccgctggaaatgcacctggtgcacaaggacaaggacggcaacatcgccgtgatcggcgtgttcttcaaagaaggcaaggcgaaccccgagctggacaaggtgttcaagaacgccctgaaagaagagggcagcaaggtcttcgacggcagcatcaacatcaacgccctgctgccaccagtgaagaactactacacctacagcggcagcctgaccaccccaccgtgcaccgaaggcgtgctgtggatcgtgctgaagcagccgatcaccgccagcaagcagcagatcgagctgttcaagagcatcatgaagcacaacaacaaccgtccgacccaaccgatcaacagccgctacatcctggaaagcaaccaccaccaccaccaccactga"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Fien Eickmans | Module 1: SIMD | <DialogReferencedisplayText="Van Rosmalen, M. M., Krom, M., & Merkx, M. (2017)."mainText="Van Rosmalen, M. M., Krom, M., & Merkx, M. (2017). Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins. Biochemistry, 56(50), 6565–6574. https://doi.org/10.1021/acs.biochem.7b00902"doi="https://doi.org/10.1021/acs.biochem.7b00902"/><br> |
| [BBa_K4665005](http://parts.igem.org/Part:BBa_K4665005) | SazCA-INPN Membrane Display Module | Composite Part | <SequenceDialogsequence="atgaaatacctgctgccgaccgctgctgctggtctgctgctcctcgctgcccagccggcgatggccaccctggataaagcactggttctgcgtacctgtgccaataatatggcagatcattgtggtctgatttggcctgcaagcggcaccgttgaaagccgttattggcagagcacccgtcgtcatgaaaatggtctggttggtctgctgtggggtgcaggcaccagcgcatttctgagcgttcatgcagatgcacgttggattgtttgtgaagttgcagttgcagatattatcagcctggaagaacctggtatggttaaatttccgcgtgccgaagttgttcatgttggtgatcgtattagcgcaagccattttatcagcgcacgtcaggcagatccggcaagcaccagcacctcaaccagcaccagtacactgaccccgatgccgaccgcaattccgacaccgatgcctgcagttgccagcgttaccctgccggttgcagaacaggcacgtcatgaagtttttgatgttgcaagcgttagcgcagcagcagcaccggttaatacactgccggttaccacaccgcagaatctgcagaccgcaacctatggtagcaccctgagcggtgataatcattcacgtctgattgcaggttatggcagcaatgaaaccgcaggtaatcatagcgatctgattggaggaggaggtagtgccgaggtccaccactggtcgtacgagggcgagaacggtccggaaaactgggccaagctgaacccggaatacttctggtgcaacctgaagaaccagtcgccagtggacatcagcgacaactacaaggtgcacgccaagctggaaaagctgcacatcaactacaacaaggcggtcaacccggaaatcgtgaacaacggccacaccatccaggtgaacgtgctggaagatttcaaactgaacatcaagggcaaagagtaccacctgaagcagttccacttccatgcgccaagcgagcacaccgtgaacggcaagtactacccgctggaaatgcacctggtgcacaaggacaaggacggcaacatcgccgtgatcggcgtgttcttcaaagaaggcaaggcgaaccccgagctggacaaggtgttcaagaacgccctgaaagaagagggcagcaaggtcttcgacggcagcatcaacatcaacgccctgctgccaccagtgaagaactactacacctacagcggcagcctgaccaccccaccgtgcaccgaaggcgtgctgtggatcgtgctgaagcagccgatcaccgccagcaagcagcagatcgagctgttcaagagcatcatgaagcacaacaacaaccgtccgacccaaccgatcaacagccgctacatcctggaaagcaaccaccaccaccaccaccactga"/> | <v-chipcolor="blue">21</v-chip><v-chipcolor="orange">1000</v-chip> | Fien Eickmans | Module 1: SIMD | <DialogReferencedisplayText="Bose, H., & Satyanarayana, T. (2017)."mainText="Bose, H., & Satyanarayana, T. (2017). Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Frontiers in microbiology, 8, 1615. https://doi.org/10.3389/fmicb.2017.01615"doi=" https://doi.org/10.3389/fmicb.2017.01615"/><br><DialogReferencedisplayText="Ivanova, L.A. et.al. (February 28, 2023)"mainText="Ivanova, L.A. et.al. (February 28, 2023). Matrix is elsewhere, extracellular DNA is a link between biofilm and mineralization in Bacillus cereus planktonic lifestyle. Npj Biofilms and Microbiomes 9(9). https://doi.org/10.1038/s41522-023-00377-5"doi="https://doi.org/10.1038/s41522-023-00377-5"/><br><DialogReferencedisplayText="Ivanova, L.A. et al. (2023)"mainText="Ivanova, L.A. et al. (2023). Structure Evolution of CaCO3 Precipitates Formed during the Bacillus cereus Induced Biomineralization. Minerals, 13(6). https://doi.org/10.3390/min13060740"doi="https://doi.org/10.3390/min13060740"/><br><DialogReferencedisplayText="Kitamura, M. (2002)"mainText="Kitamura, M. (2002). Controlling factor of polymorphism in crystallization process. Journal of Crystal Growth, 237–239, 2205–2214. https://doi.org/10.1016/s0022-0248(01)02277-1"doi="https://doi.org/10.1016/s0022-0248(01)02277-1"/><br><DialogReferencedisplayText="Konopacka-Łyskawa, D. et al. (June 17, 2017)"mainText="Konopacka-Łyskawa, D. et al. (June 17, 2017). Precipitation and Transformation of Vaterite Calcium Carbonate in the Presence of Some Organic Solvents. Materials (Basel), 13(12). https://doi.org/10.3390/ma13122742"doi="https://doi.org/10.3390/ma13122742"/><br><DialogReferencedisplayText="Levi, Y. et al. (December 14, 1998)"mainText="Levi, Y. et al. (December 14, 1998). Control Over Aragonite Crystal Nucleation and Growth: An In Vitro Study of Biomineralization. Chemistry – A European JournalVolume 4,(3). Pp. 389-39. https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<389::AID-CHEM389>3.0.CO;2-X" doi="https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<389::AID-CHEM389"/><br><DialogReferencedisplayText="Liu, R. et al. (April 19, 2021)"mainText="Liu, R. et al. (April 19, 2021). Bio-mineralisation, characterisation, and stability of calcium carbonate containing organic matter. RSC Advances, 11: 14415-14425. https://doi.org/0.1039/d1ra00615k"doi="https://doi.org/0.1039/d1ra00615k"/><br><DialogReferencedisplayText="Mergulhao, F.J.M. et al. (January 8, 2005)"mainText="Mergulhao, F.J.M. et al. (January 8, 2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23(3): 177-202. https://doi.org/10.1016/j.biotechadv.2004.11.003"doi="https://doi.org/10.1016/j.biotechadv.2004.11.003"/><br><DialogReferencedisplayText="Oniyama, E., & Wahlbeck, P. G. (1995)"mainText="Oniyama, E., & Wahlbeck, P. G. (1995). Application of transpiration theory to TGA data: Calcium carbonate and zinc chloride. Thermochimica Acta, 250(1), 41–53. https://doi.org/10.1016/0040-6031(94)01935-a"doi="https://doi.org/10.1016/0040-6031(94)01935-a"/><br><DialogReferencedisplayText="Siva, T., et al. (2017)"mainText="Siva, T., et al. (2017). Enhanced polymer induced precipitation of polymorphous in calcium carbonate: calcite aragonite vaterite phases. Journal of Inorganic and Organometallic Polymers and Materials, 27(3), 770–778. https://doi.org/10.1007/s10904-017-0520-1"doi=" https://doi.org/10.1007/s10904-017-0520-1"/><br><DialogReferencedisplayText="Wang, J., et al. (2015)"mainText="Wang, J., et al. (2015). Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01088"doi="https://doi.org/10.3389/fmicb.2015.01088"/><br><DialogReferencedisplayText="Anbu, P. et al. (March 1, 2016)"mainText=" Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5(250). https://doi.org/10.1186/s40064-016-1869-2"/><br><DialogReferencedisplayText="Zhou, G., et al. (2004)"mainText="Zhou, G., et al. (2004). Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. New Journal of Chemistry, 28(8), 1027. https://doi.org/10.1039/b315198k"doi="https://doi.org/10.1039/b315198k"/><br><DialogReferencedisplayText="Chaparro-Acuña, S.P., et al. (June, 2018) "mainText=" Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process. Acta Agronómica 67(2). https://doi.org/10.15446/acag.v67n2.66109"/><br><DialogReferencedisplayText="De Luca, V. et al. (March 15, 2013)"mainText=" An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorganic & Medicinal Chemistry Letters, 21(6): 1465.1469. https://doi.org/10.1016/j.bmc.2012.09.047"/><br><DialogReferencedisplayText="De Simone, G., et al. (May 1, 2015)"mainText=" Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic & Medicinal Chemistry Letters, 1;25(9): 2002-2006. https://doi.org/10.1016/j.bmcl.2015.02.068"/><br><DialogReferencedisplayText="Dhami, N.K., et al. ( May 2013)"mainText=" Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5): 707-714. https://doi.org/10.4014/jmb.1212.11087"/><DialogReferencedisplayText="Hartmann, S., et.al. (January 22, 2022)"mainText=" Structure and protein-protein interactions of Ice Nucleation Proteins drive their activity. BioRxiv. https://doi.org/10.1101/2022.01.21.477219"/><DialogReferencedisplayText="Kim, J. H., & Jo, B. H. (2022)"mainText=" A Colorimetric CO2 Hydration Assay for Facile, Accurate, and Precise Determination of Carbonic Anhydrase Activity. Catalysts, 12(11), 1391. MDPI AG. http://dx.doi.org/10.3390/catal12111391"/><br><DialogReferencedisplayText="Pan, S. H., & Malcolm, B. A. (2000)"mainText=" Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). BioTechniques, 29(6), 1234–1238. https://doi.org/10.2144/00296st03"/><br><DialogReferencedisplayText="Singh, P., et al.. (2013)"mainText=" Effect of signal peptide on stability and folding of Escherichia coli thioredoxin. PloS one, 8(5), e63442. https://doi.org/10.1371/journal.pone.0063442"/><br><DialogReferencedisplayText="Zhu, Y., et.al (December 6, 2021)"mainText=" Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralisation. Synthetic and Systems biotechnology, 7(1): 460-473. https://doi.org/10.1016%2Fj.synbio.2021.11.008"/> |
| [BBa_K4665170](http://parts.igem.org/Part:BBa_K4665170) | Octahedron DNA-origami (3024bp long; 42bp edges) | Basic Part | <SequenceDialogsequence=" catatgacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgatttgggtgatggttcacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcgggctattcttttgatttataagggattttgccgatttcggggtacctacgaagagttccagcagggattccaagaaatggccaatgaagattggatcacctttcgcactaagacctacttgtttgaggagtttctgatgaattggcacgaccgcctcaggaaagtggaggagcattctgtgatgactgtcaagctccaatctgaggtggacaaatataagattgttatccctatcctgaagtacgtccgcggagaacacctgtcacccgatcactggctggatctgttccgcttgctgggtctgcctcgcggcacatctctggagaaactgctgttcggtgacctgctgagagttgccgataccatcgtggccaaggctgctgacctgaaagatctgaactcacgcgcccagggtgaagtgaccatccgcgaagcactcagggaactggatttgtggggcgtgggtgctgtgttcacactgatcgactatgaggactcccagagccgcaccatgaagctgatcaaggattggaaggacatcgtcaaccaggtgggcgacaatagatgcctcctgcagtccttgaaggactcaccatactataaaggctttgaagacaaggtcagcatctgggaaaggaaactcgccgaactggacgaatatttgcagaacctcaaccatattcagagaaagtgggtttacctcgaaccaatctttggtcgcggagccctgcccaaagagcagaccagattcaacagggtggatgaagatttccgcagcatcatgacagatatcaagaaggacaatcgcgtcacaaccttgactacccacgcaggcattcgcaactcactgctgaccatcctggaccaattgcagagatgccagcgcagcctcaacgagttcctggaggagaagcgcagcgccttccctcgcttctacttcatcggagacgatgacctgctggagatcttgggccagtcaaccaatccatccgtgattcagtctcacctcaagaagctgtttgctggtatcaactctgtctgtttcgatgagaagtctaagcacattactgcaatgaagtccttggagggagaagttgtgccattcaagaataaggtgcccttgtccaataacgtcgaaacctggctgaacgatctggccctggagatgaagaagaccctggagcagctgctgaaggagtgcgtgacaaccggacgcagctctcagggagctgtggacccttctctgttcccatcacagatcctgtgcttggccgaacagatcaagtttaccgaagatgtggagaacgcaattaaagatcactccctgcaccagattgagacacagctggtgaacaaattggagcagtatactaacatcgacacatcttccgaggacccaggtaacacagagtccggtattctggagctgaaactgaaagcactgattctcgacattatccataacatcgacgtggtcaagcagctgaaccaaatccaagtgcacaccaccgaagattgggcctggaagaagcagttgaggttctacatgaagtccgaccacacctgttgcgttcagatggttgacagcgagttccagtacacctatgagtaccaaggaaatgccagcaagctcgtttacactccactcactgacaagtgttacctcaccttgacacaggctatgaagatgggcctgggaggcaacccatacggtccagctggcactggtaagacagagagcgttaaggcactcggaggtctgctgggcaggcaggtcctcgtgttcaactgtgatgaaggaatcgacgttaagtccatgggaagaatctttgttggcctcgttaagtgtggagcttggggttgcttcgacgagttcaacaggctggaggaatctgtgctgagcgccgtctctatgcagatccagaccatccaggacgcattgaagaaccacaggaccgtctgcgagctgttgggtaaggaagtggaggtgaactccaactccggaatcttcatcacaatgaatcccgcaggtaaaggatatggaggaagacagaaactcccagacaacctgaagcagctgttccgcccagtggctatgtcccatccagacaatgagctgatcgccgaagtcatcctctattccgagggattcaaagatgctaaagttctctccagaaagctcgtggccatcttcaatctgtcaagagaactcctgacacctcagcagcattacgactggggtctgagagccctcaagaccgtcctgagaggttcaggaaatctcctcaggcagctgaacaagagcggtacaacacagaatgcaaatgagagccacattgtcgtccaggctctgaggctgaataccatgtcaaagttcacattcacagactgcacaagatttgacgctctgattaaagatgtgttccctggtattgaactcaaagaagtggagtatgacgagctgagcgccgctttgaagcaggtgtttgaggaggctaactatgagattatccctaatcagatcaagaaagcattggaactgtatgaacagctgtgtcagaggatgggagtggtgattgtgggcccatcaggcgcaggtaagagcactctctggagaatgctgagagcagcactgtgcaagactggaaaggtggtgaagcaatacaccatgaatccc "/> | <v-chipcolor="orange">1000</v-chip> | Floor Vervuren | Module 2: DNA Origami | <DialogReferencedisplayText="Behler, K. L. et al. (2022)"mainText="Behler, K. L. et al. (2022). Phage-free production of artificial ssDNA with Escherichia coli. Biotechnology and Bioengineering, 119(10), 2878-2889. https://doi.org/10.1002/bit.28171"doi="ttps://doi.org/10.1002/bit.28171"/><br><DialogReferencedisplayText="Praetorius, F., Kick, B., Behler, K. et al. (2017)"mainText="Praetorius, F., Kick, B., Behler, K. et al. (2017). Biotechnological mass production of DNA origami. Nature 552, 84–87 https://doi.org/10.1038/nature24650"doi="https://doi.org/10.1038/nature24650"/><br><DialogReferencedisplayText="Julin, S., Keller, A., & Linko, V. (2022)"mainText=" Dynamics of DNA Origami Lattices. Bioconjugate Chemistry, 34(1), 18-29. https://doi.org/10.1021/acs.bioconichem.2c00"/><br><DialogReferencedisplayText="Majikes, J.M. & Liddle, J.A. (January 8, 2021)"mainText=" DNA Origami Design: A How-To Tutorial. Journal of Research of the National Institute of Standards and Technology, 126:126001. https://doi.org/10.6028/jres.126.001"/><br><DialogReferencedisplayText="Nafisi, P. M., Aksel, T., Douglas, S. M. (2018)"mainText="Construction of a novel phagemid to produce custom DNA origami scaffolds, Synthetic Biology, Volume 3, Issue 1, https://doi.org/10.1093/synbio/ysy015"/><br><DialogReferencedisplayText="Noteborn, W. E. M., Abendstein, L., & Sharp, T. H. (2020)"mainText=" One-Pot synthesis of Defined-Length SSDNA for multiscaffold DNA origami. Bioconjugate Chemistry, 32(1), 94–98. https://doi.org/10.1021/acs.bioconjchem.0c00644"/><br><DialogReferencedisplayText="Tandon, S. et al. (August 2021)"mainText=" Experimental investigation on tensile properties of the polymer and composite specimens printed in a Triangular pattern. Journal of manufacturing Process, 68A: 706-715. https://doi.org/10.1016/j.jmapro.2021.05.074"/><br><DialogReferencedisplayText="Wagenbauer, K. F. et al. (2017)"mainText=" How we make DNA origami. ChemBioChem, 18(19), 1873–1885. https://doi.org/10.1002/cbic.201700377"/> |