Skip to content
Snippets Groups Projects
Commit 8fae80c6 authored by Zhefu Li's avatar Zhefu Li
Browse files

Update model.html

parent 74d41f5a
No related branches found
No related tags found
No related merge requests found
......@@ -146,6 +146,7 @@
muscone in the systemic circulation(\(\text{mg}\)).</li>
<li><strong>Compartment 4</strong> (Target Intestine, \(I\)): \(Q_I(t)\) represents the amount of
muscone in the intestine(\(\text{mg}\)).</li>
<p></p>
<h3>Initial Settings and Assumptions</h3>
<p>At \(t=0\), the amount of muscone in all compartments is \(0\).</p>
<p>Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is
......@@ -170,8 +171,8 @@
<h4>Compartment 0: \( Q_A(t) \)</h4>
<p>
\( \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) - \left( k_{\text{exhale}} + k_{\text{perm}} \right)
Q_A(t) \)
\[ \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) - \left( k_{\text{exhale}} + k_{\text{perm}} \right)
Q_A(t) \]
</p>
<p><strong>Explanation</strong>: The amount of muscone in the alveoli increases through inhalation and
......@@ -182,7 +183,7 @@
<ul>
<li>
\( k_{\text{exhale}} \): Since most of the muscone is rapidly exhaled, this value is relatively
\ k_{\text{exhale}} \): Since most of the muscone is rapidly exhaled, this value is relatively
large, taken as \( 10 \ \text{min}^{-1} \)
</li>
<li>
......@@ -194,8 +195,8 @@
<h4>Compartment 1: \( Q_M(t) \)</h4>
<p>
\( \frac{dQ_M(t)}{dt} = 0.0005 \cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t)
\)
\[ \frac{dQ_M(t)}{dt} = 0.0005 \cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t)
\]
</p>
<p><strong>Explanation</strong>: The increase in muscone on the mucosa comes from adhesion in the
......@@ -216,7 +217,7 @@
<h4>Compartment 2: \( Q_L(t) \)</h4>
<p>
\( \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \)
\[ \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \]
</p>
<p><strong>Explanation</strong>: The increase in muscone in the alveolar capillaries comes from
......@@ -237,8 +238,8 @@
<h4>Compartment 3: \( Q_C(t) \)</h4>
<p>
\( \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}}
Q_C(t) - k_{\text{excrete}} Q_C(t) \)
\[ \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}}
Q_C(t) - k_{\text{excrete}} Q_C(t) \]
</p>
<p><strong>Explanation</strong>: The increase in muscone in the systemic circulation comes from the
......@@ -267,7 +268,7 @@
<h4>Compartment 4: \( Q_I(t) \)</h4>
<p>
\( \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t) - k_{move}Q_I(t) \)
\[ \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t) - k_{move}Q_I(t) \]
</p>
<p><strong>Explanation</strong>: The increase in muscone in the intestine comes from the distribution of
......@@ -285,34 +286,20 @@
<p>In summary, we can write a system of ordinary differential equations and import it into MATLAB for
simulation:</p>
<p>
\( Q_{\text{inhale}}(t)=100(mg)(Assumption) \)
</p>
<p>
\( V_{\text{inhale}}(t) =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \)
</p>
<p>
\( \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) -\left( k_{\text{exhale}} + k_{\text{perm}} \right)
Q_A(t) \)
</p>
<p>
\( \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \)
</p>
<p>
\( \frac{dQ_M(t)}{dt} = 0.0005\cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t)
\)
</p>
<p>
\( \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}}
Q_C(t) - k_{\text{excrete}} Q_C(t) \)
</p>
<p>
\( \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t)-k_{move}Q_I(t) \)
\[
\begin{align*}
Q_{\text{inhale}}(t) & = 100(mg)(Assumption) \\
V_{\text{inhale}}(t) & =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \\
\frac{dQ_A(t)}{dt} & = V_{\text{inhale}}(t) -\left( k_{\text{exhale}} + k_{\text{perm}} \right)
Q_A(t) \\
\frac{dQ_L(t)}{dt} & = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \\
\frac{dQ_M(t)}{dt} & = 0.0005\cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t) \\
\frac{dQ_C(t)}{dt} & = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}} Q_C(t)
-
k_{\text{excrete}} Q_C(t) \\
\frac{dQ_I(t)}{dt} & = k_{\text{dist}} Q_C(t)-k_{move}Q_I(t) \\
\end{align*}
\]
</p>
<p>TODO:插入结果图</p>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment