Skip to content
Snippets Groups Projects
Commit 2c158360 authored by Max Luca Beckmann's avatar Max Luca Beckmann
Browse files

flow cytometry

parent b1fcaf37
No related branches found
No related tags found
No related merge requests found
...@@ -83,14 +83,14 @@ export function Methods() { ...@@ -83,14 +83,14 @@ export function Methods() {
</figcaption> </figcaption>
</figure> </figure>
</div> </div>
<div className='col'> <div className='col'>
<p>To evaluate the cytotoxicity of our LNPs, we conducted an MTT assay, which measures the metabolic activity of cells. This assay is based on the ability of living cells to reduce MTT, a yellow tetrazolium salt, into purple formazan crystals through NAD(P)H-dependent enzymes. Cells were treated with various concentrations of LNPs, and after dissolving the formazan crystals with DMSO, we measured absorbance. Higher absorbance values indicate greater cell viability. Our results showed no significant reduction in cell viability across all LNP concentrations, demonstrating that the LNPs did not induce cytotoxic effects. This finding is crucial for ensuring that the LNPs are safe for biological use, supporting their potential in clinical applications such as drug delivery and gene therapy. Overall, the MTT assay provided strong evidence of the biocompatibility of our LNPs. </p> <p>To evaluate the cytotoxicity of our LNPs, we conducted an MTT assay, which measures the metabolic activity of cells. This assay is based on the ability of living cells to reduce MTT, a yellow tetrazolium salt, into purple formazan crystals through NAD(P)H-dependent enzymes. Cells were treated with various concentrations of LNPs, and after dissolving the formazan crystals with DMSO, we measured absorbance. Higher absorbance values indicate greater cell viability. Our results showed no significant reduction in cell viability across all LNP concentrations, demonstrating that the LNPs did not induce cytotoxic effects. This finding is crucial for ensuring that the LNPs are safe for biological use, supporting their potential in clinical applications such as drug delivery and gene therapy. Overall, the MTT assay provided strong evidence of the biocompatibility of our LNPs. </p>
</div> </div>
</div> </div>
<H4 text="Proliferation Assay to Monitor Long-Term Safety"></H4> <H4 text="Proliferation Assay to Monitor Long-Term Safety"></H4>
<p>In addition to assessing immediate cytotoxicity, we also evaluated the long-term safety of the LNPs by conducting a proliferation assay. This assay tracked cell division and growth over time to determine whether the LNPs impacted cellular function. Our results showed that LNP-treated cells had similar growth rates to untreated controls, indicating that the LNPs do not interfere with normal cell processes. This further confirms their biocompatibility and suitability for use in biological systems.</p> <p>In addition to assessing immediate cytotoxicity, we also evaluated the long-term safety of the LNPs by conducting a proliferation assay. This assay tracked cell division and growth over time to determine whether the LNPs impacted cellular function. Our results showed that LNP-treated cells had similar growth rates to untreated controls, indicating that the LNPs do not interfere with normal cell processes. This further confirms their biocompatibility and suitability for use in biological systems.</p>
</Subesction> </Subesction>
<Subesction title="Fluorescence-Activated Cell Sorting (FACS)" id="FACS"> <Subesction title="Flow cytometry" id="FACS">
<p>To assess the transfection efficiency of our LNPs, we used fluorescence-activated cell sorting (FACS). This method involved tagging the LNPs with fluorescent markers and measuring their ability to deliver genetic material into target cells. FACS provided quantitative insights into how effectively the LNPs transfected cells, helping us optimize their design for gene therapy applications. </p> <p>To assess the transfection efficiency of our LNPs, we used fluorescence-activated cell sorting (FACS). This method involved tagging the LNPs with fluorescent markers and measuring their ability to deliver genetic material into target cells. FACS provided quantitative insights into how effectively the LNPs transfected cells, helping us optimize their design for gene therapy applications. </p>
</Subesction> </Subesction>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment