<p>If, like other organelles, UCYN-A relies on proteins imported from the host for normal functioning, characterizing the import system and the targeting sequence is essential before transplanting the organelle into a new host organism. Building upon the work of Coale et al. [1], we aimed to advance the understanding of uTP by identifying its precise sequence.</p>
<p>If, like other organelles, UCYN-A relies on proteins imported from the host for normal functioning, characterizing the import system and the targeting sequence is essential before transplanting the organelle into a new host organism. Building upon the work of Coale et al. [1], we aimed to advance the understanding of uTP by identifying its precise sequence.</p>
<p>Starting from the raw proteomics data from [1], we selected 368 proteins expressed by the host and significantly enriched in UCYN-A and performed multiple sequence alignment (MSA). Using the alignment we identified a strongly conserved C-terminal region in many of the imported proteins similar to that reported by [1]. We selected a subset of 206 proteins with highly similar (>60% sequence identity) C-terminal alignments, indicating that these are likely to contain uTP, </p>
<p>Starting from the raw proteomics data from [1], we selected 368 proteins expressed by the host and significantly enriched in UCYN-A and performed multiple sequence alignment (MSA). Using the alignment we identified a strongly conserved C-terminal region in many of the imported proteins similar to that reported by [1]. We selected a subset of 206 proteins with highly similar (>60% sequence identity) C-terminal alignments, indicating that these are likely to contain uTP, </p>