Skip to content
Snippets Groups Projects
Commit 41d07f7f authored by Shraddha Raghuram's avatar Shraddha Raghuram
Browse files

move the impactful sentence earlier

parent 570e7f03
No related branches found
No related tags found
No related merge requests found
......@@ -54,6 +54,10 @@
<!-- 4 -->
<div class="h" id="four">
<div class="h1">Solution</div>
<p>We are motivated by the vision of making <strong>the first step of what could be one of the biggest contributions to sustainable agriculture in the near future</strong>. We believe that the use of the nitroplast's capabilities could lead to more eco-friendly farming practices and help address some of the pressing challenges associated with current fertilization techniques, both in the Netherlands where there is a major nitrogen crisis, and globally where a growing demand for feed crops clashes with a need to reduce greenhouse emissions. Our project aims to harness the power of this organelle to create a <strong>more sustainable and efficient approach to crop cultivation</strong>, ultimately benefiting both the environment and the agricultural industry.</p>
<div class="img-pagestyle" style="width:95%;margin-top:10px;margin-bottom:10px;">
<img src="https://static.igem.wiki/teams/5054/solution2.svg" alt="">
</div>
<p>The Nature publication by Coale <em>et al.</em> examines UCYN-A, which evolved from a cyanobacterial species capable of converting N<sub>2</sub> into organic nitrogenous compounds, and its relationship with the marine alga <em>Braadurosphaera bigelowii</em>. It has already been established that UCYN-A and <em>B. bigelowii</em> have a symbiotic relationship, where <em>B. bigelowii</em> functions as a so-called host, and has taken up the UCYN-A bacteria into its cell in a process known as endosymbiosis. <strong>The symbiont, UCYN-A, fixes nitrogen for the host</strong> whereas <em>B. bigelowii</em> supplies organic carbon and a conducive living environment. This paper proved that UCYN-A is not simply a symbiont, but has instead evolved into an organelle for the eukaryotic alga for nitrogen fixation, and is now called the <strong>"nitroplast"</strong> <a href="#cite11" style="color: #185A4F;">[11]</a>.</p>
<!-- Insert bigelowii pic with magnified view of UCYN-A -->
<p>The discovery of the nitroplast captured our interest - we had considered a project on nitrogen fixation before but failed to see a way in which we could innovate or propose new solutions to the problems previous teams faced. All diazotrophs (bacteria and archaea that fix atmospheric N<sub>2</sub>) use the <strong>enzyme nitrogenase</strong> to fix nitrogen, but the expression of this enzyme presents great difficulties: it is <strong>irreversibly damaged by reacting with oxygen</strong>, while at the same time catalyzing an energetically demanding reaction. Due to this, diazotrophs have evolved very complex mechanisms to couple nitrogen fixation with respiration and/or photosynthesis, which so far has been beyond reach in terms of reproduction by synthetic biologists. The <strong>nitroplast solves this problem, acting as a fully contained compartment within a eukaryote where nitrogen fixation takes place</strong>, utilizing several years of evolutionary optimization.</p>
......@@ -65,10 +69,6 @@
<img src="https://static.igem.wiki/teams/5054/solution.svg" alt="">
</div>
<p>Replicating endosymbiosis, while more ambitious than root-bacteria symbiosis, <strong>ensures by design that cell and organelle will work tightly together</strong>, preventing the difficulties associated with either root-dependence or nitrogenase expression. Our ideal <strong>long-term goal would be to introduce this organelle into crops</strong>. By doing this, it may be possible to <strong>reduce the reliance on synthetic fertilizers</strong>, thereby lowering environmental impact of their production and use, and enhancing sustainability in agriculture. This potential for positive change inspired our group to explore this innovative solution further.</p>
<p>We are motivated by the vision of making <strong>the first step of what could be one of the biggest contributions to sustainable agriculture in the near future</strong>. We believe that the use of the nitroplast's capabilities could lead to more eco-friendly farming practices and help address some of the pressing challenges associated with current fertilization techniques, both in the Netherlands where there is a major nitrogen crisis, and globally where a growing demand for feed crops clashes with a need to reduce greenhouse emissions. Our project aims to harness the power of this organelle to create a <strong>more sustainable and efficient approach to crop cultivation</strong>, ultimately benefiting both the environment and the agricultural industry.</p>
<div class="img-pagestyle" style="width:95%;margin-top:10px;margin-bottom:10px;">
<img src="https://static.igem.wiki/teams/5054/solution2.svg" alt="">
</div>
</div>
<div class="h" id="five">
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment