Newer
Older
from PocketGen.models.PD import Pocket_Design_new
from PocketGen.utils.misc import seed_all, load_config
from PocketGen.utils.transforms import FeaturizeProteinAtom, FeaturizeLigandAtom
from PocketGen.utils.data import collate_mols_block
Victor ROBERT LAMBRECHT
committed
import os
def __init__(self, checkpoint_path:str, args):
"""
The mutant generation model constructor. This method does the setup of
torch and CUDA environment, loads the checkpoint and then returns a PocketGen
instance using the weights from checkpoints and the parameters retrieved.
@param checkpoint_path (str): Path to checkpoint (.pt) file for PocketGen.
@param verbose (int): 0 for quiet, 1 for necessary information and 2 for debug.
self.verbose = args["verbose"]
self.device = args["device"]
self.outputdir = args["output"]
self.config = load_config('./PocketGen/configs/train_model.yml')
if self.verbose > 0:
print('__PJNAME__ setup started, please wait.')
if self.verbose == 2:
print('Now initializing pytorch and CUDA environment :')
torch.cuda.empty_cache()
seed_all(2089)
if self.verbose == 2:
print('\tpytorch and CUDA initialized correctly.')
print('Now retrieving alphabet from fair-ESM :')
# sets ESM2 alphabet as the usual alphabet
pretrained_model, self.alphabet = esm.pretrained.load_model_and_alphabet_hub('esm2_t33_650M_UR50D')
del pretrained_model # ESM2 pretrained_model that we don't need here is deleted from memory
print('\tESM alphabet successfully loaded.')
print('Now building PocketGen model :')
self.checkpoint = torch.load(checkpoint_path, map_location=self.device)
if self.verbose == 2:
print('\tcheckpoint successfully created.')
protein_atom_feature_dim=FeaturizeProteinAtom().feature_dim,
ligand_atom_feature_dim=FeaturizeLigandAtom().feature_dim,
device=self.device
)
if self.verbose == 2:
print("\tPocketGen model well instanciated.")
self.model = self.model.to(self.device)
if self.verbose == 2:
print('\tPocketGen model sent to selected device.')
self.model.load_state_dict(self.checkpoint['model'])
if self.verbose == 2:
print('\tcheckpoint loaded into PocketGen.')
print('End of setup, model can now be used.\n\n')
def input(self, receptor_path:str, ligand_path:str) -> "Model":
"""
Loads a protein receptor and a ligand from files and store it in
a data-loader, useable by the model when generating mutants.
@param ligand_path (str): path to the ligand SDF file.
@param receptor_path (str): path to the receptor PDB file.
@return (Model): the instance of Model, for chainability purposes.
"""
if self.verbose == 2:
print('Now parsing data from receptor and ligand :')
# get dense features from receptor-ligand interaction
features = interaction(receptor_path, ligand_path)
if self.verbose == 2:
print('\tsuccessfully parsed interaction features.\n')
print('Now building the pytorch dataloader :')
# initialize the data loader (including batch converter)
self.loader = DataLoader(
[features for _ in range(8)], # 8 * features for batching reasons
batch_size=4,
shuffle=False,
num_workers=self.config.train.num_workers,
collate_fn=partial(
collate_mols_block,
batch_converter=self.alphabet.get_batch_converter()
)
)
if self.verbose == 2:
print('\tpytorch dataloader built correctly.')
"""
Generates mutants based on the input protein receptor.
"""
if self.verbose > 0:
print("Now generating new mutant protein receptor :")
# place it in eval mode
self.model.eval()
# logits storage to understand the attention layers
logits = []
Victor ROBERT LAMBRECHT
committed
batch_folder = os.path.join(self.outputdir, "batch")
# no need to compute gradients during inference
with torch.no_grad():
Victor ROBERT LAMBRECHT
committed
for i,batch in enumerate(self.loader):
# move batch to selected device
batch = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
# well-predicted AA on total mask redisue
# root mean squared deviation (RMSD)
Victor ROBERT LAMBRECHT
committed
#batch_folder_i = os.path.join(batch_folder, str(i))
aa_ratio, rmsd, attend_logits = self.model.generate(batch, output_folder=self.outputdir)
logits.append(attend_logits.cpu())
if self.verbose > 0:
print(f"\tinference done on a batch.")