Skip to content
Snippets Groups Projects
Commit 1139c337 authored by Liliana Sanfilippo's avatar Liliana Sanfilippo
Browse files

Added references and made image mobile friendly

parent f34d1b84
No related branches found
No related tags found
2 merge requests!4React branch,!3React branch
......@@ -280,6 +280,15 @@ img .middle{
max-width: 70%;
max-height: 150px;
}
.img-right{
float: right !important;
padding-left: 1vw !important;
padding-bottom: 1vw !important;
padding-top: 1vw !important;
}
.img-half{
max-width: 50% !important;
}
/* * * * * * * */
/* * * SVG * * */
......@@ -339,6 +348,9 @@ svg text:hover{
padding-top: 10px;
padding-bottom: 5px;
}
.img-half{
max-width: 100% !important;
}
}
/*Bigger than smartphones*/
@media only screen and (min-width: 768px) {
......
......@@ -28,17 +28,12 @@ export function Description() {
<div className="col">
<section id="Approach" className="section">
<H2 text="Approach"></H2>
<p>To correct the mutation, we are utilizing Prime Editing technologies. Prime Editing is a genome editing technique that allows precise DNA modifications without causing double-strand breaks<a href="#desc-two"><sup>2</sup></a>. Structurally, the Prime Editing complex consists of a Cas9 endonuclease fused to a reverse transcriptase (RT) and guided by a pegRNA, which directs the complex to the target site in the genome. </p>
<div className="row align-items-center">
<div className="col">
<p>However, the Prime Editing complex is relatively large, posing challenges for therapeutic delivery<a href="#desc-three"><sup>3</sup></a>. Additionally, Prime Editing has been shown to be relatively inefficient in terms of gene editing rates, which could limit its therapeutic utility<a href="#desc-four"><sup>4</sup></a>. Our project aims to enhance the Prime Editing approach by miniaturizing its components. Fanzor, a recently discovered eukaryotic endonuclease, performs functions similar to Cas9, a crucial part of the Prime Editing complex, but is significantly smaller. We aim to substitute Cas9 with Fanzor. </p>
</div>
<div className="col">
<img className="img-fluid" src="https://static.igem.wiki/teams/5247/scientific-figures/complex-abb.png"/>
</div>
<img className="img-right img-half" src="https://static.igem.wiki/teams/5247/scientific-figures/complex-abb.png"/>
<div>
<p>However, the Prime Editing complex is relatively large, posing challenges for therapeutic delivery<a href="#desc-three"><sup>3</sup></a>. Additionally, Prime Editing has been shown to be relatively inefficient in terms of gene editing rates, which could limit its therapeutic utility<a href="#desc-four"><sup>4</sup></a>. Our project aims to enhance the Prime Editing approach by miniaturizing its components. Fanzor, a recently discovered eukaryotic endonuclease, performs functions similar to Cas9, a crucial part of the Prime Editing complex, but is significantly smaller. We aim to substitute Cas9 with Fanzor. </p>
<p>Additionally, we plan to replace the reverse transcriptase in the Prime Editing complex with a smaller RT variant. Furthermore, MCP proteins will be added to the Prime Editing complex to increase its stability<a href="#desc-five"><sup>5</sup></a>. </p>
<p>The pegRNA is optimized via an extension by a stem loop, which stabilizes the RNA by protecting it from RNases and serves as a binding site for the MCP, which also supports the secondary RNA structure. Additionally, the pegRNA contains a riboswitch, a sodium ion-controlled regulator that switches off the complex. This represents a major biosafety feature in that the complex is switched off after successful DNA editing and the subsequent increased influx of chloride ions into the cell. The pegRNA is combined with an optimized sgRNA resulting in higher on-target effect. Overall, its optimization leads to a longer shelf life and an increase in the biosafety of the complex. </p>
<p>To correct the mutation, we are utilizing Prime Editing technologies. Prime Editing is a genome editing technique that allows precise DNA modifications without causing double-strand breaks<a href="#desc-two"><sup>2</sup></a>. Structurally, the Prime Editing complex consists of a Cas9 endonuclease fused to a reverse transcriptase (RT) and guided by a pegRNA, which directs the complex to the target site in the genome. </p>
</div>
</section>
</div>
......@@ -57,7 +52,138 @@ export function Description() {
<p>We are envisioning a potential integration into a broader therapeutic framework involving customized gene editing tools for various genetic disorders, that present similar problems/difficulties to the F508del mutation, as well as other genetic diseases of different causes. This could include collaborations with pharmaceutical companies to develop new treatment modalities for genetic diseases beyond cystic fibrosis, utilizing advanced delivery systems and personalized medicine approaches. </p>
</section>
</div>
{/* Sources */}
<div className="col">
<section id="References">
<H2 text="References"></H2>
<ol>
{/* <!-- Citation num 1--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-one">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Scotet, V.</span>,
<span property="schema:Name">Gutierrez, H.</span>,
<span property="schema:Name">Farrell, P.</span>
</span>
<span property="schema:name">Newborn Screening for CF across the Globe—Where Is It Worthwhile?</span>
<i property="schema:publisher" typeof="schema:Organization">Int J Neonatal Screen</i>
<b property="issueNumber" typeof="PublicationIssue">6</b>,
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2020">2020</time>).
<a className="doi" href="https://doi.org/10.3390/ijn6010018">doi: 10.3390/ijn6010018</a>
</li>
{/* <!-- Citation num 2--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-two">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Anzalone, A.V.</span>,
<span property="schema:Name">Randolph, P.B.</span>,
<span property="schema:Name">Davis, J.R.</span>,
<span property="schema:Name">Sousa, A.A.</span>,
<span property="schema:Name">Koblan, L.W.</span>,
<span property="schema:Name">Levy, J.M.</span>,
<span property="schema:Name">Newby, G.A.</span>,
<span property="schema:Name">Raguram, A.</span>,
<span property="schema:Name">Liu, D.R.</span>
</span>
<span property="schema:name">Search-and-replace genome editing without double-strand breaks or donor DNA.</span>
<i property="schema:publisher" typeof="schema:Organization">Nature</i>
<b property="issueNumber" typeof="PublicationIssue">574</b>,
<span property="schema:pageBegin">589</span>-<span property="schema:pageEnd">594</span>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2019">2019</time>).
<a className="doi" href="https://doi.org/10.1038/s41586-019-1711-4">doi: 10.1038/s41586-019-1711-4</a>
</li>
{/* <!-- Citation num 3--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-three">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Broad Institute of MIT and Harvard</span>
</span>
<span property="schema:name">Researchers engineer in vivo delivery system for prime editing, partially restoring vision in mice.</span>
<i property="schema:publisher" typeof="schema:Organization">Phys.org</i>
<b property="issueNumber" typeof="PublicationIssue"></b>,
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2024">2024</time>).
</li>
{/* <!-- Citation num 4--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-four">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Gaudelli, N.</span>,
<span property="schema:Name">Komor, A.</span>,
<span property="schema:Name">Rees, H.</span>,
<span property="schema:Name">Packer, M.</span>,
<span property="schema:Name">Badran, A.</span>,
<span property="schema:Name">Bryson, D.</span>,
<span property="schema:Name">Liu, D.</span>
</span>
<span property="schema:name">Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.</span>
<i property="schema:publisher" typeof="schema:Organization">Nature</i>
<b property="issueNumber" typeof="PublicationIssue">533</b>,
<span property="schema:pageBegin">420</span>-<span property="schema:pageEnd">424</span>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2016">2016</time>).
<a className="doi" href="https://doi.org/10.1038/nature17946">doi: 10.1038/nature17946</a>
</li>
{/* <!-- Citation num 5--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-five">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">OpenEd CUNY</span>
</span>
<span property="schema:name">RNA Stability and the Role of RNA-Binding Proteins.</span>
<i property="schema:publisher" typeof="schema:Organization">OpenEd CUNY</i>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2024">2024</time>).
</li>
{/* <!-- Citation num 6--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-six">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Sahay, G.</span>,
<span property="schema:Name">Alakhova, D.Y.</span>,
<span property="schema:Name">Kabanov, A.V.</span>
</span>
<span property="schema:name">Endocytosis of nanomedicines.</span>
<i property="schema:publisher" typeof="schema:Organization">Journal of Controlled Release</i>
<b property="issueNumber" typeof="PublicationIssue">145</b>,
<span property="schema:pageBegin">182</span>-<span property="schema:pageEnd">195</span>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2010">2010</time>).
<a className="doi" href="https://doi.org/10.1016/j.jconrel.2010.01.036">doi: 10.1016/j.jconrel.2010.01.036</a>
</li>
{/* <!-- Citation num 7--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-seven">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Ramachandran, S.</span>,
<span property="schema:Name">Satapathy, S.R.</span>,
<span property="schema:Name">Dutta, T.</span>
</span>
<span property="schema:name">Delivery Strategies for mRNA Vaccines.</span>
<i property="schema:publisher" typeof="schema:Organization">Pharmaceutical Medicine</i>
<b property="issueNumber" typeof="PublicationIssue">36</b>,
<span property="schema:pageBegin">11</span>-<span property="schema:pageEnd">20</span>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2022">2022</time>).
<a className="doi" href="https://doi.org/10.1007/s40290-021-00417-5">doi: 10.1007/s40290-021-00417-5</a>
</li>
{/* <!-- Citation num 8--> */}
<li typeof="schema:ScolarlyArticle" role="doc-biblioentry" property="schema:citation" id="desc-eight">
<span property="schema:author" typeof="schema:Person">
<span property="schema:Name">Bandi, S.P.</span>,
<span property="schema:Name">Bhatnagar, S.</span>,
<span property="schema:Name">Venuganti, V.V.K.</span>
</span>
<span property="schema:name">Advanced materials for drug delivery across mucosal barriers.</span>
<i property="schema:publisher" typeof="schema:Organization">Acta Biomaterialia</i>
<b property="issueNumber" typeof="PublicationIssue">119</b>,
<span property="schema:pageBegin">13</span>-<span property="schema:pageEnd">29</span>
(<time property="schema:datePublished" datatype="xsd:gYear" dateTime="2021">2021</time>).
<a className="doi" href="https://doi.org/10.1016/j.actbio.2020.10.031">doi: 10.1016/j.actbio.2020.10.031</a>
</li>
</ol>
</section>
</div>
</div>
......
......@@ -88,7 +88,7 @@ const Pages: (Page | Folder)[] = [
path: "/description",
component: Description,
lead: "",
navlist: ["Abstract", "Cystic Fibrosis", "Our motivation", "Approach", "Delivery", "Our vision"]
navlist: ["Abstract", "Cystic Fibrosis", "Our motivation", "Approach", "Delivery", "Our vision", "References"]
},
{
name: "Engineering",
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment