Skip to content
Snippets Groups Projects
Commit a6605927 authored by isabeskow's avatar isabeskow
Browse files

Checking references

parent 46159669
No related branches found
No related tags found
No related merge requests found
Pipeline #139167 passed
......@@ -290,7 +290,7 @@
<!--Do whatever in here-->
<div>
<p>
Bao L, Menon PNK, Liljeruhm J, Forster AC. 2020. Overcoming chromoprotein limitations by engineering a red fluorescent protein. Analytical Biochemistry Vol 611. <a> "https://www.sciencedirect.com/science/article/pii/S0003269720304681?via%3Dihub" </a></p>
Bao L, Menon PNK, Liljeruhm J, Forster AC. 2020. Overcoming chromoprotein limitations by engineering a red fluorescent protein. Analytical Biochemistry 611: 113936.</p>
</div>
</div>
......
......@@ -154,9 +154,11 @@
<button type="button" class="collapsible"><img class="button_pic"
src="https://static.igem.wiki/teams/4378/wiki/img/terminator-glasses.png">References</button>
<div class="contentbox">
<p>Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. https://doi.org/10.1021/acscatal.8b05171 (2019).
<p>
Lu, H., Diaz, D.J., Czarnecki, N.J. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022). https://doi.org/10.1038/s41586-022-04599-z
<br><br>Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. https://doi.org/10.1021/acscatal.8b05171 (2019).
<br><br>Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).
<br><br>Lu, H., Diaz, D.J., Czarnecki, N.J. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022). https://doi.org/10.1038/s41586-022-04599-z
</p>
</div>
......
......@@ -221,8 +221,8 @@
src="https://static.igem.wiki/teams/4378/wiki/img/terminator-glasses.png">References</button>
<div class="contentbox">
<p>
George, N. & Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res. 53, 14185–14198 (2014).
<br><br>Du, L., Villarreal, S. & Forster, A. C. Multigene expression in vivo: Supremacy of large versus small terminators for T7 RNA polymerase. Biotechnology and Bioengineering 109, 1043–1050 (2012).
Du, L., Villarreal, S. & Forster, A. C. Multigene expression in vivo: Supremacy of large versus small terminators for T7 RNA polymerase. Biotechnology and Bioengineering 109, 1043–1050 (2012).
<br><br>George, N. & Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res. 53, 14185–14198 (2014).
<br><br>Shepherd, T. R. et al. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Research 45, 10895–10905 (2017).
</p>
......
......@@ -179,19 +179,18 @@
</button>
<div class="contentbox">
<ol>
<li>Buranyi S. 2019. The missing 99%: why can’t we find the vast majority of ocean plastic? The Guardian</li>
<li>Burns EE, Boxall ABA. 2018. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry 37: 2776–2796</li>
<li>FTI. 2022. Frequently asked questions. online 2022: https://fti.se/en/about-fti/faq. Accessed September 18, 2022</li>
<li>Kramer K-L. 2012. User Experience in the Age of Sustainability. First edition. Morgan Kaufmann Publishers In, Waltham MA</li>
<li>Kuok Ho DT, Hadibarata T. 2021. Microplastics Removal through Water Treatment Plants: Its Feasibility, Efficiency, Future Prospects and Enhancement by Proper Waste Management. Environmental Challenges 5: 100264</li>
<li>Lubbers RJM, de Vries RP. 2021. Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory. mBio 12: e0039121</li>
<li>mdepypere. 2021. The French repair index: challenges and opportunities. online February 3, 2021: https://repair.eu/news/the-french-repair-index-challenges-and-opportunities/. Accessed September 18, 2022</li>
<li>Pantamera. 2022. Hållbarhet. online 2022: https://pantamera.nu/sv/om-oss/hallbarhet/. Accessed September 18, 2022</li>
<li>The Ocean Cleanup. 2022. About. online 2022: https://theoceancleanup.com/about/. Accessed September 18, 2022</li>
<li>Upadhyay P, Lali A. 2021. Protocatechuic acid production from lignin-associated phenolics. Preparative Biochemistry & Biotechnology 51: 979-984</li>
<li>World Wildlife Fund. 2019. The problem with plastic in nature and what you can do to help. online June 6, 2019: https://www.worldwildlife.org/stories/the-problem-with-plastic-in-nature-and-what-you-can-do-to-help. Accessed September 18, 2022</li>
</ol>
<p>Buranyi S. 2019. The missing 99%: why can’t we find the vast majority of ocean plastic? The Guardian
<br><br>Burns EE, Boxall ABA. 2018. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry 37: 2776–2796
<br><br>FTI. 2022. Frequently asked questions. online 2022: https://fti.se/en/about-fti/faq. Accessed September 18, 2022
<br><br>Kramer K-L. 2012. User Experience in the Age of Sustainability. First edition. Morgan Kaufmann Publishers In, Waltham MA
<br><br>Kuok Ho DT, Hadibarata T. 2021. Microplastics Removal through Water Treatment Plants: Its Feasibility, Efficiency, Future Prospects and Enhancement by Proper Waste Management. Environmental Challenges 5: 100264
<br><br>Lubbers RJM, de Vries RP. 2021. Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory. mBio 12: e0039121
<br><br>mdepypere. 2021. The French repair index: challenges and opportunities. online February 3, 2021: https://repair.eu/news/the-french-repair-index-challenges-and-opportunities/. Accessed September 18, 2022
<br><br>Pantamera. 2022. Hållbarhet. online 2022: https://pantamera.nu/sv/om-oss/hallbarhet/. Accessed September 18, 2022
<br><br>The Ocean Cleanup. 2022. About. online 2022: https://theoceancleanup.com/about/. Accessed September 18, 2022
<br><br>Upadhyay P, Lali A. 2021. Protocatechuic acid production from lignin-associated phenolics. Preparative Biochemistry & Biotechnology 51: 979-984
<br><br>World Wildlife Fund. 2019. The problem with plastic in nature and what you can do to help. online June 6, 2019: https://www.worldwildlife.org/stories/the-problem-with-plastic-in-nature-and-what-you-can-do-to-help. Accessed September 18, 2022
</p>
</div>
</div>
</div>
......
......@@ -314,13 +314,13 @@
<!--Keep this div to make sure content collapses and reopens correctly!-->
<div class="contentbox">
<div>
<ol>
<li>Eramian D, Eswar N, Shen M-Y, Sali A. 2008. How well can the accuracy of comparative protein structure models be predicted? Protein Science : A Publication of the Protein Society 17: 1881–1893.</li>
<li>Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, Savolainen O, Meskys R, Engqvist MKM, Zelezniak A. 2021. Expanding functional protein sequence spaces using generative adversarial networks. Nature Machine Intelligence 3: 324–333.</li>
<li>Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry 26: 1701–1718.</li>
<li>Webb B, Sali A. 2016. Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics 54: 5.6.1-5.6.37.</li>
<li>Highly accurate protein structure prediction with AlphaFold - PubMed. WWW document: https://pubmed.ncbi.nlm.nih.gov/34265844/. Accessed 6 October 2022.</li>
</ol>
<p>
Eramian D, Eswar N, Shen M-Y, Sali A. 2008. How well can the accuracy of comparative protein structure models be predicted? Protein Science : A Publication of the Protein Society 17: 1881–1893.
<br><br>Highly accurate protein structure prediction with AlphaFold - PubMed. WWW document: https://pubmed.ncbi.nlm.nih.gov/34265844/. Accessed 6 October 2022.
<br><br>Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, Savolainen O, Meskys R, Engqvist MKM, Zelezniak A. 2021. Expanding functional protein sequence spaces using generative adversarial networks. Nature Machine Intelligence 3: 324–333.
<br><br>Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. 2005. GROMACS: fast, flexible, and free. Journal of Computational Chemistry 26: 1701–1718.
<br><br>Webb B, Sali A. 2016. Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics 54: 5.6.1-5.6.37.
</p>
</div>
</div>
</div>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment