diff --git a/wiki/pages/model.html b/wiki/pages/model.html index 2ffceb0b44fecd80ebae9a5445e20e02521c5d91..7edd52c7c6250e3b4a12b728c096e1397025e3d7 100644 --- a/wiki/pages/model.html +++ b/wiki/pages/model.html @@ -88,6 +88,15 @@ overflow-x: auto; /* å…许水平滚动 */ } + .col-lg-12 a { + color: #fa8072; + text-decoration: none; + transition: color 0.3s ease; + } + .col-lg-12 a:hover { + color: #ff6347; + text-decoration: underline; + } </style> </head> @@ -138,7 +147,7 @@ </div> <div class="image-container"> <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/introduction.png" alt="introduction_figure" - class="shadowed-image"> + class="shadowed-image" style="width: 80%; max-width: 800px;"> </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 1 General Description of Model</p> </div> @@ -148,7 +157,7 @@ <h2 id="topic1"> <h2>Compartment Model for Muscone Inhalation</h2> <hr> - <h3>Model Description</h3> + <h3>1.Model Description</h3> <p>The main focus of our project is the use of muscone as a signaling molecule to activate engineered yeast in the gut for therapeutic purposes. Therefore, it is crucial to provide a quantitative description and computational support for the diffusion of muscone in the body. This model describes @@ -188,7 +197,7 @@ <li><strong>Compartment 4</strong> (Target Intestine, \(I\)): \(Q_I(t)\) represents the amount of muscone in the intestine(\(\text{mg}\)).</li> <p></p> - <h3>Initial Settings and Assumptions</h3> + <h3>2. Initial Settings and Assumptions</h3> <p>At \(t=0\), the amount of muscone in all compartments is \(0\).</p> <p>Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is assumed to be \(100\text{mg}\). Only \(0.5\%\) of muscone enters the systemic circulation through @@ -196,7 +205,7 @@ synthesize lactate, we only consider the metabolism and excretion of muscone in the systemic circulation. We only focus on the short-term process of muscone appearing in the intestine from scratch, and the subsequent process of reaching a certain concentration can be ignored.</p> - <h3>Model Equations</h3> + <h3>3. Model Equations</h3> <h4>Inhalation Equation for Muscone</h4> @@ -323,7 +332,7 @@ \text{min}^{-1} \) </p> - <h3>System of Equations:</h3> + <h3>4. System of Equations:</h3> <p>In summary, we can write a system of ordinary differential equations and import it into MATLAB for simulation:</p> @@ -469,7 +478,7 @@ end</div> prepare the three-dimensional molecular model of the research object. In this study, our goal is to simulate the interaction between muscone and the olfactory receptor Or5an6 (MOR215-1).</li> </ul> - <h4>1. Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4> + <h4>Constructing the Three-Dimensional Structures of Muscone and the Receptor:</h4> <ul> <li><strong>Muscone</strong>:</li> @@ -578,7 +587,7 @@ ALQRCKNKCFSQCHC</div> </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 6 Protein structure of MOR215-1 </p> - <h4>2. System Preparation:</h4> + <h4>System Preparation:</h4> <ul> <li>To study how muscone binds to the receptor, molecular docking tools such as AutoDock and Vina are used to determine potential binding conformations and obtain docking data: @@ -676,7 +685,7 @@ out=muscure.pdbqt</div> </li> </ul> <h3>2. Force field parameterization</h3> - <h4>1. Select Force Field:</h4> + <h4>Select Force Field:</h4> <ul> <li>To perform molecular dynamics simulations, it is necessary to choose an appropriate molecular force field to describe the interactions between molecules within the system. CHARMM36 was @@ -684,7 +693,7 @@ out=muscure.pdbqt</div> due to the absence of direct parameters for musk ketone in existing force fields, custom parameters need to be generated to supplement it.</li> </ul> - <h4>2. Generate Force Field Parameters:</h4> + <h4>Generate Force Field Parameters:</h4> <ul> <li>Use Avogadro to convert to <code>.mol2</code> format, adjust file information, and then use the software <a href="https://cgenff.com/">CGenFF</a> to generate its CHARMM36 force field parameter @@ -694,7 +703,7 @@ out=muscure.pdbqt</div> </ul> <pre><code>perl sort_mol2_bonds.pl MUS.mol2 MUS_fix.mol2</code></pre> <h3>3. Preprocessing</h3> - <h4>1. Build the system:</h4> + <h4>Build the system:</h4> <ul> <li>Generate the topology file <code>MOR_processed.gro</code> for the receptor using GROMACS's <code>pdb2gmx</code> command. @@ -706,7 +715,7 @@ out=muscure.pdbqt</div> <pre><code>python cgenff_charmm2gmx_py3_nx2.py MUS MUS_fix.mol2 MUS.str charmm36-jul2022.ff</code></pre> </ul> - <h4>2. Merge the system:</h4> + <h4>Merge the system:</h4> <ul> <li>Prepare the complete solvent system required for simulations using the <code>editconf</code> and <code>solvate</code> commands, merging the topology files of muscone <code>mus.gro</code> and @@ -729,7 +738,7 @@ SOL 31227 CL 9</code></pre> </ul> - <h4>3. Energy minimization:</h4> + <h4>Energy minimization:</h4> <ul> <li>Perform energy minimization on the overall system to eliminate unreasonable conflicts in the initial geometry. Achieve rapid convergence of energy through the gradient descent algorithm and @@ -756,7 +765,7 @@ dit xvg_show -f potential.xvg</code></pre> Minimization</p> </ul> <h3>4. Molecular Dynamics Simulation</h3> - <h4>1. System Equilibration:</h4> + <h4>System Equilibration:</h4> <ul> <li>To achieve thermal and mechanical equilibrium of the system, simulations are conducted in two stages: NVT (constant temperature) and NPT (constant pressure) equilibration. The system @@ -793,7 +802,7 @@ dit xvg_show -f temperature.xvg</code></pre> </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 11 Curve of the density over time </p> - <h4>2. Production Simulation:</h4> + <h4>Production Simulation:</h4> <ul> <li>Under the conditions of equilibrium, a long-term production simulation is conducted. This simulation observes the time evolution characteristics of the dynamic interactions between @@ -828,7 +837,7 @@ gmx mdrun -deffnm md_0_10</code></pre> PyMOL.</li> </ul> - <h4>1. Trajectory Analysis:</h4> + <h4>Trajectory Analysis:</h4> <p>To gain deeper insights into the interactions between muscone and the receptor, visualization tools are used to make the simulation process intuitive, identifying key interaction sites and structural @@ -882,7 +891,7 @@ gmx trjconv -s md_0_10.tpr -f md_0_10_fit.xtc -o traj.pdb -dt 10 </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 15 Trajectory Analysis </p> - <h4>2. RMSD (Root Mean Square Deviation) Analysis</h4> + <h4>RMSD (Root Mean Square Deviation) Analysis</h4> <ul> <li>RMSD provides a fundamental metric for measuring structural deviation during the simulation @@ -921,7 +930,7 @@ xmgrace rmsd_mus.xvg</code></pre> </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 16 RMSD Analysis </p> - <h4>3. Radius of Gyration (Rg) Calculation</h4> + <h4>Radius of Gyration (Rg) Calculation</h4> <ul> <li>The radius of gyration (Rg) is used to assess the compactness of a protein and is an important @@ -946,7 +955,7 @@ xmgrace gyrate.xvg</code></pre> </div> <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 17 Radius of Gyration Calculation </p> - <h4>4. Protein-Ligand Interaction Energy</h4> + <h4>Protein-Ligand Interaction Energy</h4> <ul> <li>By calculating the Coulomb and Lennard-Jones interaction energies within the system, the binding @@ -989,7 +998,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre> <h2 id="topic3"> <h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2> <hr> - <h3>Model Description</h3> + <h3>1. Model Description</h3> <p>In our project, we express the muscone receptor (GPCR) on the yeast cell membrane. After a certain concentration of muscone diffuses into the intestine and binds to the receptor, it activates the receptor, which in turn activates the G protein. The G protein dissociates into α and @@ -1025,7 +1034,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre> <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/mapk.png" alt="MAPK Pathway" class="shadowed-image" style="width: 50%; max-width: 500px;"> </div> - <h3>Basic Assumptions</h3> + <h3>2. Basic Assumptions</h3> <ol> <li>Since the model only simulates the signal transduction shortly after muscone activation, it does not consider protein synthesis and degradation, assuming that the concentrations of each @@ -1036,7 +1045,7 @@ dit xvg_show -f interaction_energy.xvg</code></pre> factors.</li> </ol> - <h3>Model Equations</h3> + <h3>3. Model Equations</h3> <h4>Activation of muscone Receptor</h4> <strong>Reactions</strong>: <div> @@ -1848,9 +1857,9 @@ hold off;</div> <div class="row mt-4"> <div class="col-lg-12"> <h2 id="topic4"> - <h2>lactate Absorption Model</h2> + <h2>Lactate Absorption Model</h2> <hr> - <h3>Model Description</h3> + <h3>1. Model Description</h3> <p> Our project alleviates IBD symptoms by secreting lactate in the intestine to weaken autoimmunity, but it may face two aspects of doubt: first, why can't lactate or lactate @@ -1862,7 +1871,7 @@ hold off;</div> regulate treatment time and prevent acidosis. </p> - <h3>Basic Assumptions</h3> + <h3>2. Basic Assumptions</h3> <ol> <li>Only the absorption process of lactate is described, without considering other effects of lactate on the human body.</li> @@ -1872,7 +1881,7 @@ hold off;</div> secrete a total amount of lactate \(a\) within time \(t_0\), secreting \(\frac{a}{n}\) of lactate in the time interval \(\frac{t_0}{n}\).</li> </ol> - <h3>Model Equation</h3> + <h3>3. Model Equation</h3> <p> According to Fick's law : </p>