From a6e061958fd0c598361a27eba25443edc00ce109 Mon Sep 17 00:00:00 2001 From: Zhefu Li <zf-li23@mails.tsinghua.edu.cn> Date: Tue, 1 Oct 2024 11:22:02 +0000 Subject: [PATCH] Update model.html --- wiki/pages/model.html | 146 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 146 insertions(+) diff --git a/wiki/pages/model.html b/wiki/pages/model.html index 740148d1..70392639 100644 --- a/wiki/pages/model.html +++ b/wiki/pages/model.html @@ -681,6 +681,152 @@ </ul> </li> </ul> + <h3>2. Force field parameterization</h3> + <h4>1. Select Force Field:</h4> + <ul> + <li>To perform molecular dynamics simulations, it is necessary to choose an appropriate molecular + force field to describe the interactions between molecules within the system. CHARMM36 was + selected as the force field for protein and small molecule (musk ketone) interactions. However, + due to the absence of direct parameters for musk ketone in existing force fields, custom + parameters need to be generated to supplement it.</li> + </ul> + <h4>2. Generate Force Field Parameters:</h4> + <ul> + <li>Use Avogadro to convert to <code>.mol2</code> format, adjust file information, and then use the + software <a href="https://cgenff.com/">CGenFF</a> to generate its CHARMM36 force field parameter + file <code>MUS_fix.mol2</code> and parameter file <code>MUS.str</code>. This step includes + calculating the sorting of the chemical information file (<code>sort_mol2_bonds.pl</code>) to + ensure file correctness.</li> + </ul> + <pre><code>perl sort_mol2_bonds.pl MUS.mol2 MUS_fix.mol2</code></pre> + <h3>3. Preprocessing</h3> + <h4>1. Build the system:</h4> + <ul> + <li>Generate the topology file <code>MOR_processed.gro</code> for the receptor using GROMACS's + <code>pdb2gmx</code> command. + </li> + <pre><code>gmx pdb2gmx -f MOR.pdb -o MOR_processed.gro -ter</code></pre> + + <li>Convert the force field parameters of muscone to a format recognizable by GROMACS to generate + its topology data using the CGenFF helper script.</li> + <pre><code>python cgenff_charmm2gmx_py3_nx2.py MUS MUS_fix.mol2 MUS.str charmm36-jul2022.ff</code></pre> + </ul> + + <h4>2. Merge the system:</h4> + <ul> + <li>Prepare the complete solvent system required for simulations using the <code>editconf</code> and + <code>solvate</code> commands, merging the topology files of muscone <code>mus.gro</code> and + receptor <code>MOR_processed.gro</code> into a single system <code>complex.gro</code>. + </li> + <pre><code>gmx editconf -f mus_ini.pdb -o mus.gro + gmx editconf -f complex.gro -o newbox.gro -bt dodecahedron -d 1.0</code></pre> + + <li>Solvate the system in solvent (such as water). From <code>topol.top</code>, it is known that the + net charge is 9; add counterions to neutralize the system.</li> + <pre><code>gmx editconf -f complex.gro -o newbox.gro -bt dodecahedron -d 1.0 + gmx solvate -cp newbox.gro -cs spc216.gro -p topol.top -o solv.gro + gmx grompp -f ions.mdp -c solv.gro -p topol.top -o ions.tpr + gmx genion -s ions.tpr -o solv_ions.gro -p topol.top -pname NA -nname CL -neutral</code></pre> + <pre><code>[ molecules ] + ; Compound #mols + Protein_chain_A 1 + MUS 1 + SOL 31227 + CL 9</code></pre> + </ul> + + <h4>3. Energy minimization:</h4> + <ul> + <li>Perform energy minimization on the overall system to eliminate unreasonable conflicts in the + initial geometry. Achieve rapid convergence of energy through the gradient descent algorithm and + ensure all atoms in the system are reasonably positioned within the force field. Analyze the + energy minimization results to ensure both the maximum force and potential energy are within + reasonable thresholds.</li> + <pre><code>gmx grompp -f em.mdp -c solv_ions.gro -p topol.top -o em.tpr + gmx mdrun -v -deffnm em + + Steepest Descents converged to Fmax < 1000 in 1182 steps + Potential Energy = -1.5345670e+06 + Maximum force = 8.9675085e+02 on atom 4987 + Norm of force = 1.3456365e+01</code></pre> + + <pre><code>gmx energy -f em.edr -o potential.xvg + #11 0 + xmgrace potential.xvg + dit xvg_show -f potential.xvg</code></pre> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/potential.png" alt="potential" + class="shadowed-image" style="width: 50%; max-width: 500px;"> + </div> + <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 8 Potential Energy + Minimization</p> + </ul> + <h3>4. Molecular Dynamics Simulation</h3> + <h4>1. System Equilibration:</h4> + <ul> + <li>To achieve thermal and mechanical equilibrium of the system, simulations are conducted in two + stages: NVT (constant temperature) and NPT (constant pressure) equilibration. The system + temperature is gradually increased to the target of 300K to reach stable conditions, while + analyzing the curves of temperature, pressure, and density over time to ensure the stability of + the system.</li> + </ul> + + <pre><code>gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -n index.ndx -o nvt.tpr + gmx mdrun -deffnm nvt + gmx energy -f nvt.edr -o temperature.xvg + #16 0 + dit xvg_show -f temperature.xvg + </code></pre> + <img src="2.temperature.png" alt=""> + <img src="temperature.png" alt=""> + + <pre><code>gmx grompp -f npt.mdp -c nvt.gro -t nvt.cpt -r nvt.gro -p topol.top -n index.ndx -o npt.tpr -maxwarn 1 + gmx mdrun -deffnm npt + gmx energy -f npt.edr -o pressure.xvg + #17 0 + gmx energy -f npt.edr -o density.xvg + #23 0 + dit xvg_show -f temperature.xvg + </code></pre> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/3-pressure.png" alt="pressure" + class="shadowed-image" style="width: 50%; max-width: 500px;"> + </div> + <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 9 Curve of the pressure over time + </p> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/density.png" alt="density" + class="shadowed-image" style="width: 50%; max-width: 500px;"> + </div> + <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 10 Curve of the density over time + </p> + <h4>2. Production Simulation:</h4> + <ul> + <li>Under the conditions of equilibrium, a long-term production simulation is conducted. This + simulation observes the time evolution characteristics of the dynamic interactions between + muscone and the receptor, typically requiring simulation times ranging from hundreds of + nanoseconds to several microseconds to ensure the reliability and reproducibility of the + results. By sampling key frame data of the system during the dynamic process, it aids in further + analyzing the intermolecular interactions and dynamic conformational changes.</li> + </ul> + + <pre><code>gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o md_0_10.tpr + gmx mdrun -deffnm md_0_10 + </code></pre> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/mds.png" alt="MDS" + class="shadowed-image" style="width: 50%; max-width: 500px;"> + </div> + <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 11 Molecular dynamics simulation + process + </p> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/wiki-model-fig/density.png" alt="density" + class="shadowed-image" style="width: 50%; max-width: 500px;"> + </div> + <p style="text-align: center; font-size: 0.9em; margin-top: 10px;">fig 12 Results of the molecular + dynamics simulations + </p> </div> </div> -- GitLab