From 9fadf9e2548d7556160e1b00433a57d8ed65521e Mon Sep 17 00:00:00 2001 From: Zhefu Li <zf-li23@mails.tsinghua.edu.cn> Date: Tue, 1 Oct 2024 01:52:34 +0000 Subject: [PATCH] Update model.html --- wiki/pages/model.html | 1146 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 1097 insertions(+), 49 deletions(-) diff --git a/wiki/pages/model.html b/wiki/pages/model.html index e0590c4e..f9ae2f0f 100644 --- a/wiki/pages/model.html +++ b/wiki/pages/model.html @@ -2,57 +2,1105 @@ <html lang="en"> <head> - <meta charset="UTF-8"> - <meta name="viewport" content="width=device-width, initial-scale=1.0"> - <link rel="icon" type="image/x-icon" href="https://static.igem.wiki/teams/5187/art/icon.png"> - <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/styles/default.min.css"> - <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/highlight.min.js"></script> - <script>hljs.highlightAll();</script> - <title>Tsinghua - IGEM 2024</title> - <script type="text/javascript" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> - <style> - body { - font-family: Calibri, sans-serif; - line-height: 1.6; - margin: 0; - padding: 0; + <!DOCTYPE html> + <html lang="en"> + + <head> + <meta charset="UTF-8"> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> + <link rel="icon" type="image/png" href="https://static.igem.wiki/teams/5187/art/icon1.png" sizes="364x370"> + <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/styles/default.min.css"> + <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/highlight.min.js"></script> + <script> + hljs.highlightAll(); + </script> + <title>Tsinghua - IGEM 2024</title> + <script type="text/javascript" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> + <style> + body { + font-family: Arial, sans-serif; + line-height: 1.6; + margin: 0; + padding: 0; + } + + .content { + padding: 20px; + max-width: 800px; + margin: 0 auto; + } + + h2 { + scroll-margin-top: 60px; + } + + .row.mt-4 { + margin-right: 100px; + margin-left: 130px; + } + + .code-snippet { + display: none; + /* åˆå§‹æ—¶éšè—ä»£ç æ®µè½ */ + background-color: #f0f0f0; + /* MATLAB类似的背景色 */ + border: 1px solid #ccc; + padding: 10px; + margin-top: 10px; + font-family: 'Courier New', monospace; + /* 设置ç‰å®½å—体 */ + font-size: 12px; + /* 设置å—ä½“å¤§å° */ + color: #000; + /* 文本颜色 */ + white-space: pre; + /* ä¿ç•™ä»£ç æ ¼å¼ */ + overflow-x: auto; + /* å…许水平滚动 */ + } + </style> + </head> + +<body> + {% extends "layout.html" %} + + {% block title %}Model{% endblock %} + + {% block page_content %} + <div class="sidebar"> + <ul> + <li><a href="#description">General Description of Modeling</a></li> + <li><a href="#topic1">Compartment Model for Muscone Inhalation</a></li> + <li><a href="#topic2">Topic2</a></li> + <li><a href="#topic3">ODE of MAPK pathway</a></li> + <li><a href="#topic4">Lactic Acid Absorption Model</a></li> + </ul> + </div> + + <div class="progress-container"> + <svg class="progress-bar-circle" width="60" height="60"> + <circle class="progress-circle" cx="30" cy="30" r="25" stroke-width="5" fill="transparent"></circle> + </svg> + <div class="progress-text">0%</div> + </div> + + <div class="row mt-4"> + <div class="col-lg-12"> + <h2 id="description">General Description of Modeling</h2> + <hr> + <p>Our model serves two main purposes:</p> + <ol> + <li><strong>Quantitative Description of Project Design</strong>: Due to safety considerations, we were + unable to conduct animal experiments to demonstrate the processes occurring during the operation of + the project. Modeling can help in understanding therapeutic pathways, provide a quantitative + perspective, and better tell our story.</li> + <li><strong>Computational Methods for Project Engineering</strong>: If the project can be carried out, + the model can help determine the parameters in the implementation process of the project, reduce the + calculation amount in the experimental process, connect the wet experimental system independent of + each other, and make the design mathematically encapsulated as new components.</li> + </ol> + <p>Our model can be divided into four interconnected parts, representing the inhalation of muscone, its + binding + to receptors, intracellular signal transduction and lactic acid secretion triggered by receptor + activation, and the absorption of lactic acid. These models provide a comprehensive understanding of the + project and yield valuable computational results.</p> + </div> + <div class="image-container"> + <img src="https://static.igem.wiki/teams/5187/figure/ibd-figure.jpg" alt="ibd_figure" + class="shadowed-image"> + </div> + </div> + + <div class="row mt-4"> + <div class="col-lg-12"> + <h2 id="topic1"> + <h2>Compartment Model for Muscone Inhalation</h2> + <hr> + <h3>Model Description</h3> + <p>The main focus of our project is the use of muscone as a signaling molecule to activate engineered + bacteria in the gut for therapeutic purposes. Therefore, it is crucial to provide a quantitative + description and computational support for the diffusion of muscone in the body. This model describes + the entire process from the inhalation of muscone to its increased concentration in the intestinal + tract. We will establish a multi-compartment model that includes the following main processes:</p> + <ol> + <li><strong>Inhalation Process</strong>: Muscone is inhaled in the form of an aerosol into the + lungs.</li> + <li><strong>Pulmonary Process</strong>: Muscone distributes in the alveoli and may be exhaled, + adhered to, or permeated into the microvessels.</li> + <li><strong>Adhesion Process</strong>: A portion of muscone adheres to the respiratory mucosa and + then diffuses into the systemic circulation.</li> + <li><strong>Alveolar Microvessel Process</strong>: Muscone permeates into the alveolar microvessels + and gradually enters the systemic circulation.</li> + <li><strong>Systemic Circulation Process</strong>: Muscone distributes in the systemic circulation + and is transported to various parts of the body through the bloodstream.</li> + <li><strong>Intestinal Process</strong>: Muscone enters the target intestine through the mesenteric + microvascular network, where its concentration begins to increase.</li> + </ol> + <p>TODO:Insert design diagram</p> + <p>Corresponding to the above processes, five compartments need to be established for simulation, where + $t$ represents the time variable:</p> + <li><strong>Compartment 0</strong> (Alveolar Space, \(A\)): \(Q_A(t)\) represents the amount of + muscone + in the alveoli (mg).</li> + <li><strong>Compartment 1</strong> (Respiratory Mucosa, \(M\)): \(Q_M(t)\) represents the amount of + muscone adhered to the respiratory mucosa (\(\text {mg}\)).</li> + <li><strong>Compartment 2</strong> (Alveolar Capillaries, \(L\)): \(Q_L(t)\) represents the amount of + muscone in the alveolar capillaries (\(\text{mg}\)).</li> + <li><strong>Compartment 3</strong> (Systemic Circulation, \(C\)): \(Q_C(t)\) represents the amount of + muscone in the systemic circulation(\(\text{mg}\)).</li> + <li><strong>Compartment 4</strong> (Target Intestine, \(I\)): \(Q_I(t)\) represents the amount of + muscone in the intestine(\(\text{mg}\)).</li> + <h3>Initial Settings and Assumptions</h3> + <p>At \(t=0\), the amount of muscone in all compartments is \(0\).</p> + <p>Assuming that the total amount of inhaled muscone is \(Q_{\text{inhale}}\) (\(\text{mg}\)), which is + assumed to be \(100\text{mg}\). Only \(0.5\%\) of muscone enters the systemic circulation through + adhesion. In this model, since muscone only acts as a signaling molecule to activate yeast to + synthesize lactic acid, we only consider the metabolism and excretion of muscone in the systemic + circulation. We only focus on the short-term process of muscone appearing in the intestine from + scratch, and the subsequent process of reaching a certain concentration can be ignored.</p> + <h3>Model Equations</h3> + + <h4>Inhalation Equation for Muscone</h4> + + <p> + \[ V_{\text{inhale}}(t) =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \] + </p> + + <p><strong>Explanation</strong>:This describes the rate equation for inhaling muscone over five seconds, + where the total amount \( Q \) remains constant. The function \( u(t) \) is a step function, which + takes the value of \( \frac{Q_{\text{inhale}}}{5} \) from \( t=0s \) to \( t=5s \), and is \( 0 \) + otherwise, simulating the scenario of resting human respiration.</p> + + <h4>Compartment 0: \( Q_A(t) \)</h4> + + <p> + \( \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) - \left( k_{\text{exhale}} + k_{\text{perm}} \right) + Q_A(t) \) + </p> + + <p><strong>Explanation</strong>: The amount of muscone in the alveoli increases through inhalation and + decreases due to exhalation, adhesion to the respiratory mucosa, and permeation into the alveolar + capillaries.</p> + + <p><strong>Parameters</strong>:</p> + + <ul> + <li> + \( k_{\text{exhale}} \): Since most of the muscone is rapidly exhaled, this value is relatively + large, taken as \( 10 \ \text{min}^{-1} \) + </li> + <li> + \( k_{\text{perm}} \): The rate of muscone permeation into the capillaries, affected by its + physicochemical properties, is taken as \( 0.005 \ \text{min}^{-1} \) + </li> + </ul> + + <h4>Compartment 1: \( Q_M(t) \)</h4> + + <p> + \( \frac{dQ_M(t)}{dt} = 0.0005 \cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t) + \) + </p> + + <p><strong>Explanation</strong>: The increase in muscone on the mucosa comes from adhesion in the + alveoli, and the decrease is due to diffusion into the systemic circulation.</p> + + <p><strong>Parameters</strong>:</p> + + <ul> + <li> + \( k_{\text{adh}} \): The adhesion process is relatively slow, and only \( 0.5\% \) of muscone + enters the systemic circulation through this pathway, taken as \( 0.001 \ \text{min}^{-1} \) + </li> + <li> + \( k_{\text{diffMC}} \): Diffusion from the mucosa to the systemic circulation is slow, taken as + \( 0.01 \ \text{min}^{-1} \) + </li> + </ul> + <h4>Compartment 2: \( Q_L(t) \)</h4> + + <p> + \( \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \) + </p> + + <p><strong>Explanation</strong>: The increase in muscone in the alveolar capillaries comes from + permeation in the alveoli, and the decrease is due to diffusion into the systemic circulation.</p> + + <p><strong>Parameters</strong>:</p> + + <ul> + <li> + \( k_{\text{perm}} \): Same as Compartment 0 + </li> + <li> + \( k_{\text{diffLC}} \): The diffusion rate from alveolar capillaries to the systemic + circulation is relatively slow, taken as \( 0.05 \ \text{min}^{-1} \) + </li> + </ul> + + <h4>Compartment 3: \( Q_C(t) \)</h4> + + <p> + \( \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}} + Q_C(t) - k_{\text{excrete}} Q_C(t) \) + </p> + + <p><strong>Explanation</strong>: The increase in muscone in the systemic circulation comes from the + input of mucosa and alveolar capillaries, and the decrease is due to distribution to the intestinal + mesenteric microvascular network and excretion through various routes.</p> + + <p><strong>Parameters</strong>:</p> + + <ul> + <li> + \( k_{\text{diffMC}} \): Same as Compartment 1 + </li> + <li> + \( k_{\text{diffLC}} \): Same as Compartment 2 + </li> + <li> + \( k_{\text{dist}} \): The rate constant of muscone distribution from the systemic circulation + to the intestinal mesenteric microvascular network, taken as \( 0.001 \ \text{min}^{-1} \) + </li> + <li> + \( k_{\text{excrete}} \): Muscone is excreted from the systemic circulation through epidermal + volatilization, urine, continuous respiration, etc., taken as \( 0.05 \ \text{min}^{-1} \) + </li> + </ul> + + <h4>Compartment 4: \( Q_I(t) \)</h4> + + <p> + \( \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t) - k_{move}Q_I(t) \) + </p> + + <p><strong>Explanation</strong>: The increase in muscone in the intestine comes from the distribution of + the systemic circulation, and the decrease is due to metabolism and excretion through intestinal + fluid and peristalsis.</p> + + <p> + \( k_{\text{dist}} \): Same as above<br> + \( k_{move} \): The metabolism and excretion of muscone in the intestine, taken as \( 0.02 \ + \text{min}^{-1} \) + </p> + + <h3>System of Equations:</h3> + + <p>In summary, we can write a system of ordinary differential equations and import it into MATLAB for + simulation:</p> + <p> + \( Q_{\text{inhale}}(t)=100(mg)(Assumption) \) + </p> + + <p> + \( V_{\text{inhale}}(t) =\frac{Q_{\text{inhale}}}{5}(u(t)-u(t-5)) \) + </p> + + <p> + \( \frac{dQ_A(t)}{dt} = V_{\text{inhale}}(t) -\left( k_{\text{exhale}} + k_{\text{perm}} \right) + Q_A(t) \) + </p> + + <p> + \( \frac{dQ_L(t)}{dt} = k_{\text{perm}} Q_A(t) - k_{\text{diffLC}} Q_L(t) \) + </p> + + <p> + \( \frac{dQ_M(t)}{dt} = 0.0005\cdot k_{\text{adh}} V_{\text{inhale}}(t) - k_{\text{diffMC}} Q_M(t) + \) + </p> + + <p> + \( \frac{dQ_C(t)}{dt} = k_{\text{diffMC}} Q_M(t) + k_{\text{diffLC}} Q_L(t) - k_{\text{dist}} + Q_C(t) - k_{\text{excrete}} Q_C(t) \) + </p> + + <p> + \( \frac{dQ_I(t)}{dt} = k_{\text{dist}} Q_C(t)-k_{move}Q_I(t) \) + </p> + + <p>TODO:æ’入结果图</p> + + <p>We simulated the distribution of muscone in the systemic circulation and obtained the concentration + change curve of muscone in the systemic circulation. According to the model, after one breath, + traces of muskone can spread into the intestine, similarly, the concentration change caused by + continuous muskone is simulated by changing the inhalation equation, and the concentration of + muskone in the intestine can be obtained in combination with experimental determination. Because + there is no animal experimental support, the data are manually drafted, and the calculation method + is more meaningful than the calculation results.</p> + <button id="Button1" onclick="toggleCodeSnippet()">Expand the code</button> + + <div id="codeSnippet" class="code-snippet"> + % Define parameters + Q_inhale = 100; % mg + k_exhale = 10; + k_perm = 0.005; + k_adh = 0.001; + k_diffMC = 0.01; + k_diffLC = 0.05; + k_dist = 0.001; + k_excrete = 0.05; + k_move = 0.02; + + % Define the time range + tspan = [0 300]; % From 0 to 5 minutes + initial_conditions = [0 0 0 0 0]; % The initial condition is 0 + + % solve ODE + [t, y] = ode45(@(t,y) odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, + k_excrete, k_move), tspan, initial_conditions); + + % calculate V_inhale + V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); + + figure('Position', [100, 100, 1200, 1000]); + + % V_inhale(t) + subplot(3,2,1) + plot(t, V_inhale) + title('V_{inhale}(t)') + xlabel('Time (s)') + ylabel('V_{inhale}') + + % Q_A(t) + subplot(3,2,2) + plot(t, y(:,1)) + title('Q_A(t)') + xlabel('Time (s)') + ylabel('Q_A') + + % Q_L(t) + subplot(3,2,3) + plot(t, y(:,2)) + title('Q_L(t)') + xlabel('Time (s)') + ylabel('Q_L') + + % Q_M(t) + subplot(3,2,4) + plot(t, y(:,3)) + title('Q_M(t)') + xlabel('Time (s)') + ylabel('Q_M') + + % Q_C(t) + subplot(3,2,5) + plot(t, y(:,4)) + title('Q_C(t)') + xlabel('Time (s)') + ylabel('Q_C') + + % Q_I(t) + subplot(3,2,6) + plot(t, y(:,5)) + title('Q_I(t)') + xlabel('Time (s)') + ylabel('Q_I') + + sgtitle('Simulation Results') + + % ODE + function dydt = odefun(t, y, Q_inhale, k_exhale, k_perm, k_adh, k_diffMC, k_diffLC, k_dist, + k_excrete, k_move) + V_inhale = Q_inhale / 5 * (heaviside(t) - heaviside(t-5)); + dydt = zeros(5,1); + dydt(1) = V_inhale - (k_exhale + k_perm) * y(1); % dQ_A/dt + dydt(2) = k_perm * y(1) - k_diffLC * y(2); % dQ_L/dt + dydt(3) = 0.0005 * k_adh * V_inhale - k_diffMC * y(3); % dQ_M/dt + dydt(4) = k_diffMC * y(3) + k_diffLC * y(2) - k_dist * y(4) - k_excrete * y(4); % dQ_C/dt + dydt(5) = k_dist * y(4) - k_move * y(5); % dQ_I/dt + end + </div> + <script> + function toggleCodeSnippet() { + var codeSnippet = document.getElementById("codeSnippet"); + var button = document.getElementById("Button1"); // 注æ„å˜é‡å通常使用å°å†™å¼€å¤´ + if (codeSnippet.style.display === "none") { + codeSnippet.style.display = "block"; + button.textContent = "Collapse the code"; // 使用之å‰é€‰ä¸çš„æŒ‰é’®å…ƒç´ + } else { + codeSnippet.style.display = "none"; + button.textContent = "Expand the code"; // 使用之å‰é€‰ä¸çš„æŒ‰é’®å…ƒç´ + } + } + </script> + </div> + </div> + + <div class="row mt-4"> + <div class="col-lg-12"> + <h2 id="topic2"> + <h2>Topic2</h2> + <hr> + <p>Tsinghua University engages in extensive research and offers 51 bachelor's degree programs, 139 + master's degree programs, and 107 doctoral programs through 20 colleges and 57 departments covering + a broad range of subjects, including science, engineering, arts and literature, social sciences, + law, medicine. Along with its membership in the C9 League, Tsinghua University affiliations include + the Association of Pacific Rim Universities, a group of 50 leading Asian and American universities, + Washington University in St. Louis's McDonnell International Scholars Academy, a group of 35 premier + global universities, and the Association of East Asian Research Universities, a 17-member research + collaboration network of top regional institutions. Tsinghua is an associate member of the + Consortium Linking Universities of Science and Technology for Education and Research (CLUSTER). + Tsinghua is a member of a Low Carbon Energy University Alliance (LCEUA), together with the + University of Cambridge and the Massachusetts Institute of Technology (MIT).</pp> + <p>School of Life Sciences was first established in 1926 under the name Department of Biology. Botanist + Qian Chongshu took up the first dean.During the nationwide reorganization of universities in the + early 1950s, the Department of Biology was merged into other universities, namely Peking University + etc., resulting in a vacancy in the field of biological research in Tsinghua for almost 30 years.In + June 1984, decisions were made about the reestablishment of the Department of Biology, and the + department officially reopened in September. During the reestablishment the Department of Biology of + Peking University, the Institute of Biophysics of Chinese Academy of Sciences, and many other + institutes as well as biologists provided valuable support and help. The department changed its name + to the current name in September 2009. As of 2013, structural biologist and foreign associate of + National Academy of Sciences of United States Dr. Wang Hongwei (王å®ä¼Ÿ) is the current dean of School + of Life Sciences. The school currently has 129 professors and employees, around 600 undergraduates + (including the candidates of Tsinghua University – Peking Union Medical College joint MD program). + </p> + </div> + </div> + + <div class="row mt-4"> + <div class="col-lg-12"> + <h2 id="topic3"> + <h2>Ordinary Differential Equation of the signal transduction of the yeast MAPK pathway</h2> + <hr> + <h3>Model Description</h3> + <p>In our project, we express the muscone receptor (GPCR) on the yeast cell membrane. After a + certain concentration of muscone diffuses into the intestine and binds to the receptor, it + activates the receptor, which in turn activates the G protein. The G protein dissociates into α and + βγ subunits, with the βγ subunit releasing and activating Ste20 and the scaffold protein Ste5. Ste5 + can undergo oligomerization and other behaviors, recruiting Ste11, Ste7, and Fus3 near the plasma + membrane. The cascade reaction is initiated by Ste20, and the signal is transmitted along the + Ste11-Ste7-Fus3 cascade. Fus3 activates the transcription factor pFUS1, and the downstream gene is + LahA, which expresses lactate dehydrogenase LDH, catalyzing the conversion of pyruvate to lactate. + This model simulates the changes in the concentrations and phosphorylation states of molecules in + the signaling transduction pathway by writing out chemical reactions and converting them into + ordinary differential equations, in order to obtain the quantitative relationship between muscone + activation and lactate secretion. The model includes the following main processes:</p> + <ol> + <li><strong>Activation of Muscone Receptor</strong>: The muscone receptor Ste2, derived from + mouse olfactory epithelium, is a G protein-coupled receptor (GPCR) that is expressed on the cell + membrane and receives signals. Its domains consist of α, β, and γ, where the Gα subunit is + called Gpa1, and the Gα and Gγ subunits are Ste4 and Ste18, respectively, both anchored in the + cell membrane, without discussing the scenario of their separation. After binding with muscone, + Gpa1 will release Ste4-Ste18.</li> + <li><strong>Formation of Scaffold</strong>: The released Ste4-Ste18 can bind to Ste5, and the Ste5 + protein can undergo dimerization, oligomerization, and other behaviors, forming a scaffold near + the cell membrane and recruiting proteins related to the cascade phosphorylation.</li> + <li><strong>Cascade Reaction</strong>: The scaffold composed of Ste5 can recruit Ste11 (MAPKKK), + Ste7 (MAPKK), and Fus3 (MAPK). Each of these three proteins has multiple phosphorylation + modification sites, and the efficiency of catalyzing phosphorylation varies under different + modification scenarios. Furthermore, the three proteins independently bind to Ste5, and a + reaction can only occur when two adjacent proteins are simultaneously present on the scaffold, + making this signaling pathway highly specific.</li> + <li><strong>Activation of pFUS1</strong>: The transcription factor pFUS1 is activated by Fus3, and + the downstream gene is LahA, which expresses lactate dehydrogenase to produce lactate.</li> + </ol> + <h3>Basic Assumptions</h3> + <ol> + <li>Since the model only simulates the signal transduction shortly after muscone activation, it + does not consider protein synthesis and degradation, assuming that the concentrations of each + protein remain stable during this time.</li> + <li>It is assumed that all proteins involved in the cascade reaction have the same dephosphorylation + rate, denoted by \(k_{cat_{dephosph}}\).</li> + <li>The behavior of all molecules in the system is random and not influenced by environmental + factors.</li> + </ol> + + <h3>Model Equations</h3> + <h4>Activation of muscone Receptor</h4> + <strong>Reactions</strong>: + <div> + <p> + \[ + \begin{align*} + \text{Pheromone} + \text{Ste2} & \rightarrow \text{PheromoneSte2} \\ + \text{PheromoneSte2} & \rightarrow \text{Pheromone} + \text{Ste2} \\ + \text{PheromoneSte2} + \text{Gpa1Ste4Ste18} & \rightarrow \text{PheromoneSte2Gpa1Ste4Ste18} \\ + \text{PheromoneSte2Gpa1Ste4Ste18} & \rightarrow \text{PheromoneSte2Gpa1} + \text{Ste4Ste18} \\ + \text{PheromoneSte2Gpa1} & \rightarrow \text{PheromoneSte2} + \text{Gpa1} \\ + \text{Gpa1} + \text{Ste4Ste18} & \rightarrow \text{Gpa1Ste4Ste18} + \end{align*} + \] + </p> + </div> + <strong>Explanation</strong> + <p> + After Ste2 binds with muscone, it interacts with the G protein, causing the exchange of GDP + bound to the G protein with GTP in the cytoplasm, releasing Ste4 and Ste18. After Gpa1 catalyzes the + conversion of GTP to GDP, it can return to the cytoplasm and rebind, forming a G protein trimer. + Since the original signaling pathway is the yeast pheromone signaling pathway, with the ligand being + the pheromone, this section uses Pheromone to represent the molecules that activate the receptor. + </p> + + + <strong>Ordinary Differential Equations</strong> + <div> + <p> + \[ + \begin{align*} + \frac{d{P}}{dt} & = k_{off_{PS}}{PS} - k_{on_{PS}}{P}*{S} \\ + \frac{d{S}}{dt} & = k_{off_{PS}}{PS} - k_{on_{PS}}{P}*{S} \\ + \frac{d{PS}}{dt} & = k_{on_{PS}}{P}*{S} + k_{off_{SG}} {PSG} \\ + & \quad - k_{off_{PS}}{PS} - k_{on_{SG}}{PS} * {GSS} \\ + \frac{d{GSS}}{dt} & = k_{on_{GS}}{SS} * {G} - k_{on_{SG}}{PS} * {GSS} \\ + \frac{d{PSGSS}}{dt} & = k_{on_{SG}}{PS} * {GSS} - k_{on_{GS}}{PSGSS} \\ + \frac{d{PSG}}{dt} & = k_{on_{GS}}{PSGSS} - k_{off_{SG}} {PSG} \\ + \frac{d{SS}}{dt} & = k_{on_{GS}}{PSGSS} - k_{on_{GS}}{SS} * {G} \\ + \frac{d{G}}{dt} & = k_{off_{SG}} {PSG} - k_{on_{GS}}{SS} * {G} \\ + \end{align*} + \] + </p> + </div> + <strong>Variables</strong> + <table> + <thead> + <tr> + <th>Variable</th> + <th>Represents Molecule</th> + <th>Concentration (\(\mu M\))</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(P\)</td> + <td>Pheromone</td> + <td>-</td> + </tr> + <tr> + <td>\(S^*\)</td> + <td>Ste2</td> + <td>0.287</td> + </tr> + <tr> + <td>\(PS\)</td> + <td>PheromoneSte2</td> + <td>-</td> + </tr> + <tr> + <td>\(GSS\)</td> + <td>Gpa1Ste4Ste18</td> + <td>-</td> + </tr> + <tr> + <td>\(PSGSS\)</td> + <td>PheromoneSte2Gpa1Ste4Ste18</td> + <td>-</td> + </tr> + <tr> + <td>\(PSG\)</td> + <td>PheromoneSte2Gpa1</td> + <td>-</td> + </tr> + <tr> + <td>\(SS^*\)</td> + <td>Ste4Ste18</td> + <td>\(2\times 10^{-4}\)</td> + </tr> + <tr> + <td>\(G^*\)</td> + <td>Gpa1</td> + <td>\(2\times 10^{-4}\)</td> + </tr> + </tbody> + </table> + + <strong>Parameters</strong> + <table> + <thead> + <tr> + <th>Parameter</th> + <th>Meaning</th> + <th>Value</th> + <th>Unit</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(k_{on_{PS}}^*\)</td> + <td>Binding rate of Pheromone to Ste2</td> + <td>\(0.185\)</td> + <td>\({\mu M}^{-1} \cdot s^{-1}\)</td> + </tr> + <tr> + <td>\(k_{off_{PS}}^*\)</td> + <td>Dissociation rate of PheromoneSte2</td> + <td>\(1 \times 10^{-3}\)</td> + <td>\(s^{-1}\)</td> + </tr> + <tr> + <td>\(k_{on_{SG}}\)</td> + <td>Binding rate of PheromoneSte2 to Gpa1Ste4Ste18</td> + <td>-</td> + <td>\({\mu M}^{-1} \cdot s^{-1}\)</td> + </tr> + <tr> + <td>\(k_{off_{SG}}\)</td> + <td>Dissociation rate of PheromoneSte2Gpa1</td> + <td>-</td> + <td>\(s^{-1}\)</td> + </tr> + <tr> + <td>\(k_{on_{GS}}\)</td> + <td>Binding rate of Gpa1 to Ste4Ste18</td> + <td>-</td> + <td>\({\mu M}^{-1} \cdot s^{-1}\)</td> + </tr> + <tr> + <td>\(k_{off_{GS}}\)</td> + <td>Dissociation rate of PheromoneGpa1Ste4Ste18</td> + <td>-</td> + <td>\(s^{-1}\)</td> + </tr> + </tbody> + </table> + + <strong>Initial Conditions</strong> + <p> + There are \(1{\mu M}\) of Pheromone and \(1{\mu M}\) of inactive G proteins. Known variables are + entered, other variables are set to zero, and unknown parameters are defined. After starting the + simulation, reactions occur according to the equations listed. + </p> + + <p>TODO:æ’入结果图</p> + <h4>Formation of the Scaffold</h4> + <strong>Reactions</strong>: + <div> + \[ + \begin{align*} + Ste5 + Ste5 & \leftrightarrows Ste5Ste5 \\ + Ste4Ste18Ste5 + Ste5 & \leftrightarrows Ste4Ste18Ste5Ste5 \\ + Ste4Ste18Ste5 + Ste4Ste18Ste5 & \leftrightarrows Ste4Ste18Ste5Ste5Ste4Ste18 \\ + Ste4Ste18 + Ste5 & \leftrightarrows Ste4Ste18Ste5 \\ + Ste4Ste18 + Ste5Ste5 & \leftrightarrows Ste4Ste18Ste5Ste5 \\ + Ste4Ste18 + Ste4Ste18Ste5Ste5 & \leftrightarrows Ste4Ste18Ste5Ste5Ste4Ste18 \\ + \end{align*} + \] + </div> + <strong>Explanation</strong>: The binding of Ste4Ste18 with Ste5 and the oligomerization of Ste5 is a + process that is not completely independent. Many equations can be derived through combinations, but here + we only consider the dimerization process, and each reaction is reversible. Since Ste5 actually binds to + Ste4, we abbreviate Ste5 as S5 and Ste4 as S4 in the equations. + <strong>Ordinary Differential Equations</strong>: + <div> + \[ + \begin{align*} + \frac{d{S5}}{dt} & = -2 k_{on_{S5:S5}}{S5}^2 + 2 k_{off_{S5:S5}}{S55} \\ + & \quad -k_{on_{S4:S5}}{S5}*{S4} + k_{off_{S4:S5}}{S45} \\ + & \quad -k_{on_{S4S5:S5}}{S5}*{S45}+k_{off_{S4S5:S5}}{S5}*{S455}\\ + \frac{d{S55}}{dt} & = k_{on_{S5:S5}} {S5}^2- k_{off_{S5:S5}}{S55} \\ + & \quad - k_{on_{S4:S5S5}} {S4}* {S55} + k_{off_{S4:S5S5}} {S455} \\ + \frac{d{S45}}{dt} & = k_{on_{S4:S5}}{S5}*{S4}- k_{off_{S4:S5}} {S45} \\ + & \quad -k_{on_{S4S5:S5}}{S5}*{S45}+k_{off_{S4S5:S5}}{S5}*{S455}\\ + & \quad -2 k_{on_{S4S5:S5S4}}{S45}^2 + 2 k_{off_{S4S5:S5S4}}{S4554} \\ + \frac{d{S455}}{dt} & = k_{on_{S4:S5S5}} {S4}* {S55} - k_{off_{S4:S5S5}} {S455} \\ + & \quad +k_{on_{S4S5:S5}}{S5}*{S45}-k_{off_{S4S5:S5}}{S5}*{S455}\\ + & \quad -k_{on_{S4:S5S5S4}}{S455}*{S4}+k_{off_{S4:S5S5S4}}{S4554}\\ + \frac{d{S4554}}{dt} & = k_{on_{S4:S5S5S4}}{S455}*{S4}-k_{off_{S4:S5S5S4}}{S4554}\\ + & \quad +k_{on_{S4S5:S5S4}}{S45}^2 - k_{off_{S4S5:S5S4}}{S4554} \\ + \frac{d{S4}}{dt} & = -k_{on_{S4:S5}}{S5}*{S4}+ k_{off_{S4:S5}} {S45} \\ + & \quad - k_{on_{S4:S5S5}} {S4}* {S55} + k_{off_{S4:S5S5}} {S455} \\ + & \quad -k_{on_{S4:S5S5S4}}{S455}*{S4}+k_{off_{S4:S5S5S4}}{S4554}\\ + \end{align*} + \] + </div> + <strong>Variables</strong> + <table> + <thead> + <tr> + <th>Variable</th> + <th>Represents Molecule</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(S5\)</td> + <td>Ste5</td> + </tr> + <tr> + <td>\(S55\)</td> + <td>Ste5Ste5</td> + </tr> + <tr> + <td>\(S45\)</td> + <td>Ste4Ste18Ste5</td> + </tr> + <tr> + <td>\(S455\)</td> + <td>Ste4Ste18Ste5Ste5</td> + </tr> + <tr> + <td>\(S4554\)</td> + <td>Ste4Ste18Ste5Ste5Ste4Ste18</td> + </tr> + <tr> + <td>\(S4\)</td> + <td>Ste4Ste18</td> + </tr> + </tbody> + </table> + + <strong>Parameters</strong> + <table> + <thead> + <tr> + <th>Parameter</th> + <th>Meaning</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(k_{on_{S5:S5}}\)</td> + <td>Binding rate of Ste5 and Ste5</td> + </tr> + <tr> + <td>\(k_{off_{S5:S5}}\)</td> + <td>Dissociation rate of Ste5:Ste5</td> + </tr> + <tr> + <td>\(k_{on_{S4:S5}}\)</td> + <td>Binding rate of Ste4Ste18 and Ste5</td> + </tr> + <tr> + <td>\(k_{off_{S4:S5}}\)</td> + <td>Dissociation rate of Ste4Ste18:Ste5</td> + </tr> + <tr> + <td>\(k_{on_{S4S5:S5}}\)</td> + <td>Binding rate of Ste4Ste18Ste5 and Ste5</td> + </tr> + <tr> + <td>\(k_{off_{S4S5:S5}}\)</td> + <td>Dissociation rate of Ste4Ste18Ste5:Ste5</td> + </tr> + <tr> + <td>\(k_{on_{S4:S5S5}}\)</td> + <td>Binding rate of Ste4Ste18 and Ste5Ste5</td> + </tr> + <tr> + <td>\(k_{off_{S4:S5S5}}\)</td> + <td>Dissociation rate of Ste4Ste18:Ste5Ste5</td> + </tr> + <tr> + <td>\(k_{on_{S4:S5S5S4}}\)</td> + <td>Binding rate of Ste4Ste18Ste5Ste5 and Ste4Ste18</td> + </tr> + <tr> + <td>\(k_{off_{S4:S5S5S4}}\)</td> + <td>Dissociation rate of Ste4Ste18Ste5Ste5:Ste4Ste18</td> + </tr> + <tr> + <td>\(k_{on_{S4S5:S5S4}}\)</td> + <td>Binding rate of Ste4Ste18Ste5 and Ste4Ste18Ste5</td> + </tr> + <tr> + <td>\(k_{off_{S4S5:S5S4}}\)</td> + <td>Dissociation rate of Ste4Ste18Ste5:Ste5Ste4Ste18</td> + </tr> + </tbody> + </table> + + <strong>Initial conditions</strong> + <p>Assume that before signal transduction starts, there are only free Ste5 and just released Ste4Ste18 + in the cell, with concentrations both equal to 1, and parameters are assumed. After starting the + simulation, reactions occur according to the listed equations, and after a period of time, the + concentrations reach equilibrium.</p> + + <p>TODO: Insert result graph</p> + <h4>Cascading Reactions</h4> + <p><strong>Reactions</strong>:</p> + <div> + <p> + \[ + \begin{align*} + Ste5_{off_{Ste11}} + Ste11_{off} & \leftrightarrows Ste5Ste11 \\ + Ste5_{off_{Ste7}} + Ste7_{off} & \leftrightarrows Ste5Ste7 \\ + Ste5_{off_{Fus3}} + Fus3_{off} & \leftrightarrows Ste5Fus3 \\ + \end{align*} + \] + </p> + <p> + \[ + \begin{align*} + Ste11 & \xrightarrow {Ste20} Ste11_{pS} \\ + Ste11_{pS} & \xrightarrow {Ste20} Ste11_{pSpS} \\ + Ste11_{pSpS} & \xrightarrow {Ste20} Ste11_{pSpSpT} \\ + \end{align*} + \] + </p> + <p> + \[ + \begin{align*} + Ste7 & \xrightarrow {Ste11_{pS},Ste11_{pSpS},Ste11_{pSpSpT}} Ste7_{pS} \\ + Ste7_{pS} & \xrightarrow {Ste11_{pS},Ste11_{pSpS},Ste11_{pSpSpT}} Ste7_{pSpT}\\ + \end{align*} + \] + </p> + <p> + \[ + \begin{align*} + Fus3 & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pY} \\ + Fus3 & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pT} \\ + Fus3_{pY} & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pYpT} \\ + Fus3_{pT} & \xrightarrow {Ste7_{pS},Ste7_{pSpT}} Fus3_{pYpT} \\ + \end{align*} + \] + </p> + </div> + <h2>Explanation</h2> + <p>Only the Ste5 bound to the scaffold has significance in recruiting Ste11, Ste7, and Fus3, and the + binding to these three proteins is independent. Therefore, the Ste5 on the scaffold can be treated + as three copies to calculate its binding with Ste11, Ste7, and Fus3 separately. The three proteins + are activated through cascading phosphorylation initiated by Ste20, and the conditions for the + reactions to occur are that the kinases are activated and bound to the scaffold. Each protein has + different forms of phosphorylation modifications, which may have different catalytic reaction rates; + thus, they need to be listed separately.</p> + + <h2>Ordinary Differential Equations</h2> + <p>The forms of multiple reactions are similar; here, only a portion is selected for demonstration.</p> + <p>Taking Ste11 as an example to illustrate the binding of the kinase with Ste5:</p> + <div> + <p> + \[ + \begin{align*} + \frac{dSte5_{off_{Ste11}}}{dt} & = k_{off_{Ste5Ste11}}Ste5Ste11 - + k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} * Ste11_{off} \\ + \frac{dSte11_{off}}{dt} & = k_{off_{Ste5Ste11}}Ste5Ste11 - k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} + * Ste11_{off} \\ + \frac{dSte5Ste11}{dt} & = - k_{off_{Ste5Ste11}}Ste5Ste11 + k_{on_{Ste5Ste11}}Ste5_{off_{Ste11}} + * Ste11_{off} \\ + \end{align*} + \] + </p> + </div> + + <h2>Variables</h2> + <table> + <thead> + <tr> + <th>Variable</th> + <th>Represents Molecule</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(Ste5_{off_{Ste11}}\)</td> + <td>Unbound kinase Ste5</td> + </tr> + <tr> + <td>\(Ste11_{off}\)</td> + <td>Unbound scaffold Ste11</td> + </tr> + <tr> + <td>\(Ste5Ste11\)</td> + <td>Bound Ste5 and Ste11</td> + </tr> + </tbody> + </table> + + <h2>Parameters</h2> + <table> + <thead> + <tr> + <th>Parameter</th> + <th>Meaning</th> + <th>Units</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(k_{off_{Ste5Ste11}}\)</td> + <td>Dissociation rate of Ste5Ste11</td> + <td>\({s}^{-1}\)</td> + </tr> + <tr> + <td>\(k_{on_{Ste5Ste11}}\)</td> + <td>Association rate of Ste5 and Ste11</td> + <td>\({\mu M}^{-1}·s^{-1}\)</td> + </tr> + </tbody> + </table> + <p>Using Ste11 catalyzing the phosphorylation of Ste7 as an example to illustrate the phosphorylation + process:</p> + <div> + <p> + \[ + \frac{dSte7_{pS}}{dt} = + kcat_{Ste11pS{Ste7_{pS}}}Ste11_{pS}*\frac{Ste5Ste11}{Ste11_{total}}*\frac{Ste5Ste7}{Ste7_{total}}*\frac{Ste7_{pS}}{Ste7_{total}}+\ldots + \] + </p> + </div> + + <h2>Variables</h2> + <table> + <thead> + <tr> + <th>Variable</th> + <th>Represents Molecule</th> + </tr> + </thead> + <tbody> + <tr> + <td>\(Ste7_{pS}\)</td> + <td>Phosphorylated Ste7 at S359</td> + </tr> + <tr> + <td>\(Ste11_{pS}\)</td> + <td>Phosphorylated Ste11 at S302</td> + </tr> + <tr> + <td>\(Ste5Ste11\)</td> + <td>Ste11 bound to Ste5</td> + </tr> + <tr> + <td>\(Ste5Ste7\)</td> + <td>Ste7 bound to Ste5</td> + </tr> + <tr> + <td>\(Ste7_{total}\)</td> + <td>Total amount of Ste7</td> + </tr> + </tbody> + </table> + + <h2>Parameters</h2> + <p>\(kcat_{Ste11pS{Ste7_{pS}}}\): Represents the catalytic efficiency in this case.</p> + + <h2>Initial Conditions</h2> + <p>The concentrations of the three kinases are known, assuming their initial state has not undergone + phosphorylation. Some enzyme activity parameters are known, and other parameters are roughly + estimated to the same order of magnitude.</p> + + <p>TODO: Insert result figure</p> + + </div> + </div> + + <div class="row mt-4"> + <div class="col-lg-12"> + <h2 id="topic4"> + <h2>Lactic Acid Absorption Model</h2> + <hr> + <h3>Model Description</h3> + <p> + Our project alleviates IBD symptoms by secreting lactic acid in the intestine to weaken + autoimmunity, but it may face two aspects of doubt: first, why can't lactic acid or lactic acid + bacteria probiotics be taken directly; second, will the considerable secretion of lactic acid cause + acidosis in the human body? We hope to model our project to describe how it has a better sustained + release effect compared to direct lactic acid consumption, more precise control compared to + probiotic intake, and to avoid adaptation of the immune system and gut microbiota. Additionally, we + need to develop a computational method to achieve precise control over lactic acid secretion to + regulate treatment time and prevent acidosis. + </p> + + <h3>Basic Assumptions</h3> + <ol> + <li>Only the absorption process of lactic acid is described, without considering other effects of + lactic acid on the human body.</li> + <li>It is assumed that the location where lactic acid acts on immune cells is separated from the + intestinal environment.</li> + <li>It is assumed that the secretion rate of lactic acid is uniform, and activated yeast cells + secrete a total amount of lactic acid \(a\) within time \(t_0\), secreting \(\frac{a}{n}\) of + lactic acid in the time interval \(\frac{t_0}{n}\).</li> + </ol> + <h3>Model Equation</h3> + <h4>Direct Administration</h4> + <p>In the case of direct lactic acid intake, the content of lactic acid in the intestine can be + described by the following equation:</p> + <p> + \( Q_d = (Q_{d_0} + a)e^{-(k_1 + k_2)t} \) + </p> + <p><strong>Explanation</strong>: The absorption rate is proportional to the concentration of lactic + acid, and the concentration of lactic acid declines in an exponential form.</p> + + <p><strong>Parameters</strong>:</p> + <ul> + <li>\( Q_d \): Remaining lactic acid content in the intestinal environment</li> + <li>\( Q_{d_0} \): Initial lactic acid content in the intestinal environment</li> + <li>\( a \): Total amount of lactic acid ingested</li> + <li>\( k_1 \): Absorption rate of lactic acid</li> + <li>\( k_2 \): Rate at which lactic acid is eliminated due to metabolism and excretion</li> + <li>\( t \): Time</li> + </ul> + + <h4>Induced Secretion</h4> + <p>According to Fick's Law</p> + <p>The remaining lactic acid content in the intestinal environment has a recursive relationship over + time:</p> + <p> + \( Q_{d_i} = \left(Q_{d_{i-1}} + \frac{a}{n}\right)e^{-(k_1 + k_2)(t - (i-1)\frac{t_0}{n})} \) + </p> + <p>We can obtain the expression:</p> + <p> + \( Q_{d_i} = \frac{a}{n} \sum_{m=1}^{i-1} e^{-(k_1 + k_2)\left(mt - \left(j \frac{(m+2)(m+1)}{2} + \frac{t_0}{n}\right)\right)} \) + </p> + <p>TODO: Insert result graph</p> + + <p>By simulating the absorption process of lactic acid, we can conclude that in the case of direct + administration, the concentration of lactic acid decreases exponentially over time, while in the + case of induced secretion, the concentration of lactic acid slowly increases over time and reaches + equilibrium after a certain period.</p> + </div> + </div> + +</body> + +</html> +{% endblock %} +<meta charset="UTF-8"> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> +<link rel="icon" type="image/x-icon" href="https://static.igem.wiki/teams/5187/art/icon.png"> +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/styles/default.min.css"> +<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.5.1/highlight.min.js"></script> +<script> + hljs.highlightAll(); +</script> +<title>Tsinghua - IGEM 2024</title> +<script type="text/javascript" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> +<style> + body { + font-family: Calibri, sans-serif; + line-height: 1.6; + margin: 0; + padding: 0; + } + + .content { + padding: 20px; + max-width: 800px; + margin: 0 auto; + } + + h2 { + scroll-margin-top: 60px; + } + + .row.mt-4 { + margin-right: 100px; + margin-left: 130px; } - .content { - padding: 20px; - max-width: 800px; - margin: 0 auto; - } - - h2 { - scroll-margin-top: 60px; - } - - .row.mt-4 { - margin-right: 100px; - margin-left: 130px; - } - - .code-snippet { - display: none; - /* åˆå§‹æ—¶éšè—ä»£ç æ®µè½ */ - background-color: #f0f0f0; - /* MATLAB类似的背景色 */ - border: 1px solid #ccc; - padding: 10px; - margin-top: 10px; - font-family: 'Courier New', monospace; - /* 设置ç‰å®½å—体 */ - font-size: 12px; - /* 设置å—ä½“å¤§å° */ - color: #000; - /* 文本颜色 */ - white-space: pre; - /* ä¿ç•™ä»£ç æ ¼å¼ */ - overflow-x: auto; - /* å…许水平滚动 */ - } - </style> + .code-snippet { + display: none; + /* åˆå§‹æ—¶éšè—ä»£ç æ®µè½ */ + background-color: #f0f0f0; + /* MATLAB类似的背景色 */ + border: 1px solid #ccc; + padding: 10px; + margin-top: 10px; + font-family: 'Courier New', monospace; + /* 设置ç‰å®½å—体 */ + font-size: 12px; + /* 设置å—ä½“å¤§å° */ + color: #000; + /* 文本颜色 */ + white-space: pre; + /* ä¿ç•™ä»£ç æ ¼å¼ */ + overflow-x: auto; + /* å…许水平滚动 */ + } +</style> </head> <body> -- GitLab