diff --git a/wiki/pages/results.html b/wiki/pages/results.html index 9f045986f08ec013161721f406182394b7883d5b..8747118b61efab7179fdc459e8440e7762cd08a4 100644 --- a/wiki/pages/results.html +++ b/wiki/pages/results.html @@ -17,7 +17,7 @@ <div onclick="goTo(document.getElementById('three'))"><span id="subtitle3" style="color: #62D881;"><strong>WET LAB</strong></span></div> <div onclick="goTo(document.getElementById('four'))"><span id="subtitle4" style="color: #62D881;">uTP expression</div> <div onclick="goTo(document.getElementById('five'))"><span id="subtitle5" style="color: #62D881;">UCYN-A fusion</div> - + <div onclick="goTo(document.getElementById('six'))"><span id="subtitle6" style="color: #62D881;"><strong>References</strong></div> </div> @@ -98,7 +98,7 @@ <div class="h3"><strong>Expression of uTP tagged by Fluorescent proteins</strong></div> <p>The ultimate goal with the uTP sequences we identified is to understand and confirm whether they are indeed responsible for protein import into UCYN-A. Conventional methods to check this would require a toolbox for genetic manipulation of B. bigelowii, not yet available and beyond the scope of this project. We therefore opted for using 2 model eukaryotes for further research on uTP’s behavior, namely C. reinhardtii and S. cerevisiae, and designed an experiment to confirm uTP’s function without modifying B. bigelowii.</p> <p>We worked off of a <em>Saccharomyces</em> and a <em>Chlamydomonas</em> backbone, pUDE1311 and pOpt2-mVenusBle respectively, in order to design constructs expressing - fluorescent proteins (FP) tagged by known transit peptides as well as uTP. Unmodified, pUDE1311 expresses ymNeongreen and pOpt2-mVenusBle expresses mVenus, a YFP analogue. We designed constructs + fluorescent proteins (FP) tagged by known transit peptides as well as uTP. Unmodified, pUDE1311 expresses ymNeongreen and pOpt2-mVenusBle expresses mVenus, a YFP analogue. We designed 2 constructs for expression in our yeast and 3 in our algae </p> @@ -147,7 +147,7 @@ </figcaption> </div> - <p>Despite multiple attempts at the fusion procedure, we were unable to obtain conclusive results. The yeast cells' native autofluorescence interfered with measurements using the fluorescent microscope, since GFP expression in our E. coli strain was not very strong: we hypothesize this is due to the stress experienced by the cells during the fusion procedure. + <p>Despite multiple attempts at the fusion procedure, we were unable to obtain conclusive results. The yeast cells' native autofluorescence interfered with measurements using the fluorescent microscope, since GFP expression in our E. coli strain was not very strong: we hypothesize this is due to the stress experienced by the cells during the fusion procedure. Since the intensity from autofluorescence was too similar to the <em>E. coli</em>'s, we could not draw conclusions from our images. To circumvent these problems, selective staining of bacterial RNA or DAPI staining of E. coli prior to fusion were both proposed. Due to time constraints, we could not execute any of these changes.</p> @@ -157,10 +157,23 @@ </div> - - - - + <a href="#cite1" style="color: #185A4F;">[1]</a> + + <div class="h" id="six"> + <div class="h1">References</div> + <ol style="text-align:justify; font-family:AccidenzCommons; color:#185A4F; font-weight:400; font-size: min(1.5vw, 22px); font-style: normal; line-height: normal;"> + <li id="cite1"> Coale, T. H., Loconte, V., Turk-Kubo, K. A., Vanslembrouck, B., Mak, W. K. E., Cheung, S., Ekman, A., Chen, J., Hagino, K., Takano, Y., Nishimura, T., Adachi, M., Gros, M. L., Larabell, C., & Zehr, J. P. (2024a). Nitrogen-fixing organelle in a marine alga. Science, 384(6692), 217–222.<a href="https://doi.org/10.1126/science.adk1075" style="color:#185A4F;">https://doi.org/10.1126/science.adk1075</a></li> + <li id="cite2"> Dong, C., Shi, Z., Huang, L., Zhao, H., Xu, Z., & Lian, J. (2021). Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 118(11), 4269–4277. <a href="https://doi.org/10.1002/BIT.27896" style="color:#185A4F;">https://doi.org/10.1002/BIT.27896</a></li> + <li id="cite3"> <a href="https://parts.igem.org/Part:BBa_K4806014" style="color:#185A4F;">https://parts.igem.org/Part:BBa_K4806014</a></li> + <li id="cite4"> Chatzi, K. E., Sardis, M. F., Tsirigotaki, A., Koukaki, M., Å oÅ¡tarić, N., Konijnenberg, A., Sobott, F., Kalodimos, C. G., Karamanou, S., & Economou, A. (2017). Preprotein mature domains contain translocase targeting signals that are essential for secretion. Journal of Cell Biology, 216(5), 1357–1369. <a href="https://doi.org/10.1083/JCB.201609022" style="color:#185A4F;">https://doi.org/10.1083/JCB.201609022</a></li> + <li id="cite5"> Mehta, A. P., Supekova, L., Chen, J., Pestonjamasp, K., Webster, P., Ko, Y., Henderson, S. C., McDermott, G., Supek, F., & Schultz, P. G. (2018). Engineering yeast endosymbionts as a step toward the evolution of mitochondria. Proceedings of the National Academy of Sciences, 115(46), 11796–11801. <a href="https://doi.org/10.1073/pnas.1813143115" style="color:#185A4F;">https://doi.org/10.1073/pnas.1813143115</a></li> + <li id="cite6"> Kunová, N., OndroviÄová, G., Bauer, J. A., Bellová, J., Ambro, Ľ., Martináková, L., Kotrasová, V., Kutejová, E., & Pevala, V. (2017). The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Scientific Reports, 7(1). <a href="https://doi.org/10.1038/s41598-017-00632-8" style="color:#185A4F;">https://doi.org/10.1038/s41598-017-00632-8</a></li> + <li id="cite7"> Suzuki, S., Kawachi, M., Tsukakoshi, C., Nakamura, A., Hagino, K., Inouye, I., & Ishida, K. (2021b). Unstable Relationship Between Braarudosphaera bigelowii (= Chrysochromulina parkeae) and Its Nitrogen-Fixing Endosymbiont. Frontiers in Plant Science, 12. <a href="https://doi.org/10.3389/fpls.2021.749895" style="color:#185A4F;">https://doi.org/10.3389/fpls.2021.749895</a></li> + <li id="cite8"> Albiniak, A. M., Baglieri, J., & Robinson, C. (2012). Targeting of lumenal proteins across the thylakoid membrane. Journal of Experimental Botany, 63(4), 1689–1698. <a href="https://doi.org/10.1093/JXB/ERR444" style="color:#185A4F;">https://doi.org/10.1093/JXB/ERR444</a></li> + <li id="cite9"> Peeters, N., & Small, I. (2001). Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1541(1–2), 54–63. <a href="https://doi.org/10.1016/S0167-4889(01)00146-X" style="color:#185A4F;">https://doi.org/10.1016/S0167-4889(01)00146-X</a></li> + <li id="cite10"> Ojala and Garriga. <a href="https://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf" style="color:#185A4F;">Permutation Tests for Studying Classifier Performance.</a> J. Mach. Learn. Res. 2010</li> + + </div> @@ -177,7 +190,8 @@ document.getElementById('two'), document.getElementById('three'), document.getElementById('four'), - document.getElementById('five')]; + document.getElementById('five'), + document.getElementById('six')]; window.goTo = function(el){ @@ -197,6 +211,7 @@ Highlight(elements[0], document.getElementById('subtitle3')); Highlight(elements[0], document.getElementById('subtitle4')); Highlight(elements[0], document.getElementById('subtitle5')); + Highlight(elements[0], document.getElementById('subtitl6')); } window.addEventListener("scroll", HighlightCheck);