diff --git a/src/contents/model.tsx b/src/contents/model.tsx index 224b29785082e661e005829f4633eba62f1968b4..178fb209554b72f83e7adc3380a8d63b0873b0a6 100644 --- a/src/contents/model.tsx +++ b/src/contents/model.tsx @@ -67,15 +67,14 @@ export function Model() { <h2 className="center-text">Section 1 ODE Model of Biochemical Reactions</h2> <h3>1.1 Oxidation of Phenylethylamine</h3> <p>Firstly, phenylethylamine (PEA) diffuses through the outer membrane of <em>Escherichia coli</em> into the periplasmic space, where it interacts with TynA.</p> - <MathJax.Provider className="mathjax-provider"> + <MathJax.Provider> <div className='indent formula_content' > <MathJax.Node formula={`{PEA_{gut}\\overset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\underset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\rightleftharpoons}} PEA_{peri}}`} /> <span className='formula_number'>1</span> - </div> </MathJax.Provider> <p>According to the law of mass action, this process can be represented by an ordinary differential equation (ODE) as follows</p> - <MathJax.Provider className="mathjax-provider"> + <MathJax.Provider> <div className='indent formula_content' > <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{peri}}([PEA_{gut}] - [PEA_{peri}])`} /> <span className='formula_number'>2</span> @@ -434,8 +433,7 @@ export function Model() { <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}}`} /> <span className='formula_number'>30</span> </div> - <div className='indent formula_content'> - + <div className='indent formula_content' id='long_formula'> <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{cyto}]}{\\mathrm{d}t} = k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] + \\frac{k_{diff\\_PAA}}{V_{cyto}}([PAA_{gut}]-[PAA_{cyto}])`} /> <span className='formula_number'>31</span> </div>