diff --git a/src/components/Navbar copy.css b/src/components/Navbar copy.css
deleted file mode 100644
index f8689bf184060e2a787649d48896a482204e4a6c..0000000000000000000000000000000000000000
--- a/src/components/Navbar copy.css	
+++ /dev/null
@@ -1,89 +0,0 @@
-@import url('https://fonts.googleapis.com/css2?family=SF+Pro+Display:wght@300;400;500&display=swap');
-.nav-icon {
-  margin-right: 8px;
-  font-size: 1em;
-  vertical-align: middle;
-}
-
-
-.apple-navbar {
-  /* background-color: rgba(255, 255, 255, 0.8); */
-  background-color: rgba(245, 245, 220,0.8);
-  backdrop-filter: saturate(180%) blur(20px);
-  border-bottom: 1px solid rgba(0, 0, 0, 0.1);
-  padding: 0;
-  display: flex;
-  justify-content: center;
-}
-
-.apple-brand {
-  padding: 0 20px;
-  margin-right: auto;
-}
-
-.apple-logo {
-  height: 68px;
-  width: auto;
-}
-
-.apple-nav {
-  font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
-  margin-right: auto;
-}
-
-.apple-nav .nav-link,
-.apple-nav .dropdown-toggle {
-  display: flex;
-  align-items: center;
-  color: #000;
-  font-size: 20px;
-  font-weight: 300;
-  padding: 12px 20px;
-  transition: opacity 0.2s ease;
-}
-
-
-.apple-nav .nav-link:hover,
-.apple-nav .dropdown-toggle:hover {
-  opacity: 0.65;
-}
-
-.apple-nav .dropdown-menu {
-  background-color: rgba(255, 255, 255, 0.8);
-  backdrop-filter: saturate(180%) blur(20px);
-  border: none;
-  border-radius: 8px;
-  box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
-}
-
-.apple-nav .dropdown-item {
-  color: #000;
-  font-size: 18px;
-  font-weight: 300;
-  padding: 10px 20px;
-}
-
-.apple-nav .dropdown-item:hover {
-  background-color: rgba(0, 0, 0, 0.05);
-}
-
-.apple-toggler {
-  border: none;
-  padding: 0 20px;
-}
-
-.apple-toggler:focus {
-  box-shadow: none;
-}
-
-@media (max-width: 991px) {
-  .apple-navbar {
-    padding: 10px 0;
-    justify-content: flex-start;
-  }
-  
-  .apple-nav .nav-link,
-  .apple-nav .dropdown-toggle {
-    padding: 10px 20px;
-  }
-}
\ No newline at end of file
diff --git a/src/components/Navbar copy.tsx b/src/components/Navbar copy.tsx
deleted file mode 100644
index 42716c33fd58132d8f0b942daed1b678cace007d..0000000000000000000000000000000000000000
--- a/src/components/Navbar copy.tsx	
+++ /dev/null
@@ -1,62 +0,0 @@
-
-import Nav from "react-bootstrap/Nav";
-import BootstrapNavbar from "react-bootstrap/Navbar";
-import NavDropdown from "react-bootstrap/NavDropdown";
-import { Link } from "react-router-dom";
-import Pages from "../pages.ts";
-import { Container } from "react-bootstrap";
-import "./Navbar.css"; // 添加这行来引入自定义 CSS 文件的1
-
-export function Navbar() {
-  const pages = Pages.map((item, pageIndex) => {
-    if ("folder" in item && item.folder) {
-      const folderItems = item.folder.map((subpage, subpageIndex) => {
-        if (subpage.path) {
-          return (
-            <NavDropdown.Item
-              key={`subpage-${pageIndex}-${subpageIndex}`}
-              as={Link}
-              to={subpage.path}
-              className="custom-dropdown-menu"
-            >
-              {subpage.name}
-            </NavDropdown.Item>
-          );
-        }
-      });
-      return (
-        <NavDropdown
-          key={`page-${pageIndex}`}
-          title={item.name}
-          id="basic-nav-dropdown"
-          className="custom-dropdown-menu"
-        >
-          {folderItems}
-        </NavDropdown>
-      );
-    } else if ("path" in item && item.path) {
-      return (
-        <Nav.Link 
-        key={`page-${pageIndex}`} as={Link} to={item.path}
-        className="custom-dropdown-menu"
-        >
-          {item.name}
-        </Nav.Link>
-      );
-    }
-  });
-
-  return (
-    <BootstrapNavbar expand="lg" className="apple-navbar" fixed="top">
-      <Container fluid>
-        <BootstrapNavbar.Brand as={Link} to="/" className="apple-brand">
-          <img src="https://static.igem.wiki/teams/5378/lesser-panda/logo.webp" className="apple-logo" alt="Logo" />
-        </BootstrapNavbar.Brand>
-        <BootstrapNavbar.Toggle aria-controls="basic-navbar-nav" className="apple-toggler" />
-        <BootstrapNavbar.Collapse id="basic-navbar-nav">
-          <Nav className="ms-auto apple-nav">{pages}</Nav>
-        </BootstrapNavbar.Collapse>
-      </Container>
-    </BootstrapNavbar>
-  );
-}
\ No newline at end of file
diff --git a/src/components/Navbar.css b/src/components/Navbar.css
index 298cc49f4615dfaaced9285a6e9b0cca84adb196..7cb5afd249f560345af7abc94e17691220d58679 100644
--- a/src/components/Navbar.css
+++ b/src/components/Navbar.css
@@ -5,7 +5,21 @@
   vertical-align: middle;
 }
 
+@font-face {
+  font-family: 'pangolin';
+  src: url('https://static.igem.wiki/teams/5378/font/pangolin-regular.woff2') format('woff2'),
+       url('https://static.igem.wiki/teams/5378/font/pangolin-regular.woff') format('woff'); 
+  font-weight: normal;
+  font-style: normal;
+}
 
+@font-face {
+  font-family: 'LexieReadable';
+  src: url('https://static.igem.wiki/teams/5378/font/lexiereadable-regular.woff') format('woff2'),
+       url('https://static.igem.wiki/teams/5378/font/lexiereadable-bold.woff') format('woff'); 
+  font-weight: normal;
+  font-style: normal;
+}
 .apple-navbar {
   /* background-color: rgba(255, 255, 255, 0.8); */
   background-color: rgba(245, 245, 220,0.8);
@@ -27,7 +41,7 @@
 }
 
 .apple-nav {
-  font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
+  font-family: 'pangolin', cursive;
   margin-right: auto;
 }
 
diff --git a/src/containers/App/App.css b/src/containers/App/App.css
index 359ff8ee7b1181dc281366a8a336da3b795ddcee..4c96f8e60046a029f8bd8248495677c0242ba34f 100644
--- a/src/containers/App/App.css
+++ b/src/containers/App/App.css
@@ -991,6 +991,34 @@ span.formula_line::-webkit-scrollbar-track {
   color: #333;
 }
 
+
+.accordion-content-model {
+  max-height: 0;
+  overflow: hidden;
+  transition: max-height 0.4s ease;
+  background-color: rgb(245, 245, 220);
+  padding: 0 15px;
+}
+
+.accordion-content-model.open {
+  max-height: 300vh; 
+  padding: 15px;
+  margin-left: 5px;
+  border-left:3px solid #5bc0de ;
+  background-color: rgb(245, 245, 220);
+}
+
+.accordion-content-model p {
+  margin: 0;
+  font-size: 2.1vh;
+  color: #333;
+}
+
+.accordion-content-model img{
+  max-width: 600px;
+  margin: auto;
+}
+
 .home-container {
   position:relative;
   width: 100vw;
diff --git a/src/contents/description copy.tsx b/src/contents/description copy.tsx
deleted file mode 100644
index eaed3d033666e06614aa7b6605acaf95acb9dea3..0000000000000000000000000000000000000000
--- a/src/contents/description copy.tsx	
+++ /dev/null
@@ -1,115 +0,0 @@
-import { Inspirations, InspirationLink } from "../components";
-
-export function Description() {
-  const links: InspirationLink[] = [
-    { year: 2022, teamName: "DTU-Denmark", pageName: "Description" },
-    { year: 2019, teamName: "ITESO_Guadalajara", pageName: "Description" },
-    { year: 2020, teamName: "Technion-Israel", pageName: "Description" },
-    { year: 2020, teamName: "Botchan_Lab_Tokyo", pageName: "Description" },
-    { year: 2020, teamName: "St_Andrews", pageName: "Description" },
-    { year: 2020, teamName: "MIT", pageName: "Description" },
-  ];
-
-  return (
-    <>
-      <div className="row mt-4">
-        <div className="col">
-          <div className="bd-callout bd-callout-info">
-            <h4>利用基因工程细菌改善肝性脑病(Hepatic Encephalopathy, HE)</h4>
-            <p>初步版本描述</p>
-            <hr />
-            <p>
-              Please see the{" "}
-              <a href="https://competition.igem.org/judging/medals">
-                2024 Medals Page
-              </a>{" "}
-              for more information.
-            </p>
-          </div>
-        </div>
-      </div>
-
-      <div className="row mt-4">
-        <div className="col-lg-8">
-          <h2>背景</h2>
-          <hr />
-          <ul>
-            <li>HE是由肝功能不全引起的脑功能障碍。</li>
-            <li>全球约有1.12亿代偿性肝硬化患者,其中40%-60%会发展成肝性脑病。</li>
-          </ul>
-          <h2>HE的流行病学和病因</h2>
-          <hr />
-          <ul>
-            <li>HE患者体内氨水平异常。</li>
-            <li>肝硬化患者体内过量的氨能穿过血脑屏障,导致神经功能障碍和认知能力下降。</li>
-          </ul>
-          <h2>当前HE的药物治疗</h2>
-          <hr />
-          <ul>
-            <li>利福昔明(Rifaximin):一种肠道吸收的广谱抗菌药物,对肠道细菌有活性,低风险诱导细菌耐药。</li>
-            <li>乳果糖(Lactulose):非吸收性药物,通过通便作用和改变结肠pH来减少氨吸收,但有胃肠副作用,患者依从性差。</li>
-            <li>LOLA/支链氨基酸补充剂:减少假神经递质的产生。</li>
-            <li>肠道微生物:显著改善HE的发展、生活质量和血浆氨浓度,但对死亡率无显著影响。</li>
-          </ul>
-          <h2>基因工程微生物(GEM)与HE的先前研究</h2>
-          <hr />
-          <ul>
-            <li>氨主要在肠道作为蛋白质消化、氨基酸脱氨和细菌脲酶活动的最终产物产生。</li>
-            <li>研究中的GEM使用Pfnrs作为启动子,厌氧条件作为激活条件,删除了编码精氨酸抑制因子ArgR的基因,整合了argA215基因,将肠道中的氨转化为L-精氨酸。</li>
-          </ul>
-          <h2>技术程序(新设计)</h2>
-          <hr />
-          <p>底盘:胆酸感应大肠杆菌Nissle 1917。</p>
-          <p>模块(3部分):感应/代谢/安全。</p>
-          <h2>设计</h2>
-          <hr />
-          <h3>感应模块</h3>
-          <p>肝硬化患者肝脏产生足够胆酸的能力受损,利用胆酸诱导启动子和NOT门设计感应模块。</p>
-          <h3>代谢模块</h3>
-          <ul>
-            <li>氨摄取:使用高亲和力的Amt2和Rh蛋白促进NH3的双向流动。</li>
-            <li>氨代谢:从氨氧化古菌中获得灵感,尝试将GS-GOGAT循环引入大肠杆菌,使用氨产生能量和氨基酸。</li>
-            <li>实验验证:通过西方印迹法检测大肠杆菌中GS和GOGAT的表达,酚光度法测试培养基中氨的变化。</li>
-          </ul>
-          <h3>安全模块</h3>
-          <p>使用厌氧启动子和可编程CAP表达系统,确保工程细菌只在肠道厌氧环境中发挥作用。</p>
-          <h2>预期实验结果(结论)</h2>
-          <hr />
-          <ul>
-            <li>开发出一种新型基因改造细菌E.Coli. BW25113,使用胆酸作为特定生物标记物,响应胆酸感应信号,触发增强的氨代谢。</li>
-            <li>通过基因改造细菌E.Coli. BW25113的质粒整合,将氨转化为L-天冬氨酸和L-鸟氨酸,有效转化肠道中的氨,延缓肝性脑病的发作。</li>
-            <li>通过体内实验探索基因改造细菌干预对氨代谢的影响,为肝性脑病的临床治疗提供新的研究思路。</li>
-            <li>验证重组大肠杆菌E.Coli. BW25113与SYNB1020相比,在小鼠实验中产生较少的内毒素,对氨转化的响应速度更快,代谢过程更高,体内L-天冬氨酸和L-鸟氨酸水平升高,使其成为一种具有更高生物安全性的新型基因改造细菌。该实验设计遵循人道和伦理原则,预期结果是前所未有的、创新的和新颖的。</li>
-          </ul>
-        </div>
-        <Inspirations inspirationLinkList={links} />
-      </div>
-
-      <div className="row mt-4">
-        <div className="col-lg-8">
-          <h2>Some advice</h2>
-          <hr />
-          <p>
-            We encourage you to put up a lot of information and content on your
-            wiki, but we also encourage you to include summaries as much as
-            possible. If you think of the sections in your project description
-            as the sections in a publication, you should try to be concise,
-            accurate, and unambiguous in your achievements. Your Project
-            Description should include more information than your project
-            abstract.
-          </p>
-        </div>
-        <div className="col-lg-4">
-          <h2>References</h2>
-          <hr />
-          <p>
-            iGEM teams are encouraged to record references you use during the
-            course of your research. They should be posted somewhere on your
-            wiki so that judges and other visitors can see how you thought about
-            your project and what works inspired you.
-          </p>
-        </div>
-      </div>
-    </>
-  );
-}
diff --git a/src/contents/home copy.tsx b/src/contents/home copy.tsx
deleted file mode 100644
index 33728964282b7fdc159556856f4f5b0dc7ed033b..0000000000000000000000000000000000000000
--- a/src/contents/home copy.tsx	
+++ /dev/null
@@ -1,97 +0,0 @@
-// import { url } from "inspector";
-import React, { useRef } from "react";
-
-
-export function Home() {
-    const containerRef = useRef<HTMLDivElement>(null);
-    const sectionRefs = useRef<(HTMLDivElement | null)[]>([]); // 储存每个section的引用
-    let currentPage = 0; // 当前页面索引
-  
-    const scrollToSection = (index: number) => {
-      if (containerRef.current && sectionRefs.current[index]) {
-        const target = sectionRefs.current[index];
-        if (target) {
-          target.scrollIntoView({
-            behavior: "smooth",
-          });
-          currentPage = index;
-        }
-      }
-    };
-  
-    const handleScroll = (event: React.WheelEvent) => {
-      if (event.deltaY > 0) {
-        // 向下滚动
-        if (currentPage < sectionRefs.current.length - 1) {
-          scrollToSection(currentPage + 1);
-        }
-      } else {
-        // 向上滚动
-        if (currentPage > 0) {
-          scrollToSection(currentPage - 1);
-        }
-      }
-    };
-  
-    return (
-      <div
-        className="fullpage-container"
-        ref={containerRef}
-        onWheel={handleScroll}
-      >
-        <section className="section bg-rice_yellow" ref={(el) => (sectionRefs.current[0] = el as HTMLDivElement)}>
-          <div className="row">
-
-            <div className="col-3"></div>
-            <div className="col-6">
-              <div className="vh20"></div>
-              <img
-                src="https://static.igem.wiki/teams/5378/image/zxa-tp.webp"
-                alt="zxa"
-                className="responsive-img"
-              />
-            </div>
-            <div className="col-3"></div>
-          </div>
-        </section>
-        <section className="section bg-rice_yellow" ref={(el) => (sectionRefs.current[1] = el as HTMLDivElement)}>
-        <div className="row">
-                <div>我是小盒子</div>
-                <div className="rounded-border">橙色</div>
-                <p>大家好,我是文本</p>
-                <h2 className="center-text">居中</h2>
-                <p className="indent">大家好啊,我的开头有缩进</p>
-                <p className="center-text">大家好!我是居中文本!</p>
-                <p className="bold-font">粗粗的文本</p>
-                <p className="red-font">红色的文本</p>
-                <p className="green-font">绿色的文本</p>
-                <p className="blue-font">蓝色的文本</p>
-                <p className="red-font center-text">叠加了多种属性的文本,
-                <span className="bold-font">插入了粗体</span>文字</p>
-                <h1>一级标题</h1>
-                <h2>二级标题</h2>
-                <h3>三级标题</h3>
-                <h4>四级标题</h4>
-              </div>
-        </section>
-
-        <section className="section bg-rice_yellow" ref={(el) => (sectionRefs.current[2] = el as HTMLDivElement)}>
-        <div className="row">
-        <div className="col-3"></div>
-        
-             <div className="col-6 mb-5">
-             <div className="vh20 row h1 justify-content-center">Stream our PV!!!</div>
-                 <iframe 
-                  title="SMU-GDMU-CHINA: Engineered bacterial therapeutics for Preventing Hepatic Encepha... (2024) - Project Promotion [English]"  
-                  className="promotion-video"
-                  src="https://video.igem.org/videos/embed/b8667885-e1be-48b2-ab9b-d1aac71db0da"  
-                  allowFullScreen={true} 
-                  sandbox="allow-same-origin allow-scripts allow-popups allow-forms">
-                </iframe>
-            </div>
-            <div className="col-3"></div>
-            </div>
-        </section>
-      </div>
-    );
-  }
\ No newline at end of file
diff --git a/src/contents/inclusivity.tsx b/src/contents/inclusivity.tsx
index 773e724d214a88486e6f0d300e1f8a26e01df25d..7b9146107d1cfb907c3155f980beaf94bd9f70d6 100644
--- a/src/contents/inclusivity.tsx
+++ b/src/contents/inclusivity.tsx
@@ -105,7 +105,7 @@ export function Inclusivity() {
               <p>"We are all connected in the great web of existence." — Chief Seattle</p>
               <div className="rounded-border">
               <h4 className="center-text">To see</h4>
-              <p className="indent">Through iGEM, we recognize the importance of diversity and inclusivity in the scientific community. We are committed to making the synthetic biology community more accessible to minority groups and creating a learning environment where everyone feels welcome. Our project focuses on the urban-rural divide, aiming to help rural residents break down barriers to information and promote educational equity. At the same time, we have adopted a completely new approach by combining synthetic biology with Socially popular art crafts, allowing everyone to benefit from our education. In our project, we have consulted experts in various fields and communicated with other iGEM teams. We are convinced that through these initiatives, we are connected to the entire world.</p>
+              <p className="indent">Through iGEM, we recognize the importance of diversity and inclusivity in the scientific community.Our team is committed to the inclusion of people from diverse backgrounds in scientific research, particularly in the areas of educational equity and social inclusion in urban and rural areas. Through a series of concrete activities, we help people of different identities and backgrounds to learn about science, in particular the importance and applications of hepatic encephalopathy and synthetic biology. Our aim is to enable everyone to do their part to improve health and promote scientific progress, and to stimulate interest in scientific research, wherever they come from.</p>
               </div>
               <div className='image-container'>
               <img 
@@ -113,7 +113,7 @@ export function Inclusivity() {
                 alt="example"
                 className="image-wide"
                 />
-                <figcaption className='caption'>12345678</figcaption>
+                <figcaption className='caption'>SMU-GDMU iGEM Team Members Group Photo</figcaption>
               </div>
               </Element>
 
diff --git a/src/contents/model.tsx b/src/contents/model.tsx
index 02c92d42422830bac1a99625a6db25e6e9cf475f..71740a18d3027e5c95ee6bd9699eb3824df95cb8 100644
--- a/src/contents/model.tsx
+++ b/src/contents/model.tsx
@@ -1,993 +1,1138 @@
 import { Nav } from 'react-bootstrap';
-import { Link,Element } from 'react-scroll';
-import React,{useEffect,useState} from 'react';
+import { Link, Element } from 'react-scroll';
+import React, { useEffect, useState } from 'react';
 import MathJax from 'react-mathjax';
 
 
 
 
+type formData = {
+    id: string;
+    col1: string;
+    col2: string;
+    col3: string;
+    col4: string;
+};
+const table1: formData[] = [
+    { id: 'CBMKr', col1: 'Carbamate kinase', col2: 'atp_c + co2_c + nh4_c <=> adp_c + cbp_c + 2.0 h_c', col3: '0.551604', col4: 'Maximize' },
+    { id: 'GMPS', col1: 'GMP synthase', col2: 'atp_c + nh4_c + xmp_c --> amp_c + gmp_c + 2.0 h_c + ppi_c', col3: '0.214121', col4: 'Maximize' },
+    { id: 'ASNS2', col1: 'Asparagine synthetase', col2: 'asp\\_\\_L_c + atp_c + nh4_c --> amp_c + asn\\_\\_L_c + h_c + ppi_c', col3: '0.212208', col4: 'Maximize' },
+    { id: 'GLYCL', col1: 'Glycine Cleavage System', col2: 'gly_c + nad_c + thf_c --> co2_c + mlthf_c + nadh_c + nh4_c', col3: '0.047647', col4: 'Minimize' },
+    { id: 'TRPAS2', col1: 'Tryptophanase (L-tryptophan)', col2: 'h2o_{c} + trp\\_\\_L_{c} <=> indole_{c} + nh4_{c} +  pyr_{c}', col3: '-0.050040', col4: 'Minimize' },
+    { id: 'GLUDy', col1: 'Glutamate dehydrogenase (NADP)', col2: 'glu\\_\\_L_c + h2o_c + nadp_c <=> akg_c + h_c + nadph_c + nh4_c', col3: '-7.527480', col4: 'Minimize' }
+];
+
+
+const table2: formData[] = [
+    { id: 'GLYCL', col1: 'ATPS4rpp', col2: 'ECOLIN_RS21500, ECOLIN_RS21495, ECOLIN_RS21480, ECOLIN_RS21490, ECOLIN_RS21485, ECOLIN_RS21470', col3: '0', col4: '0.313876' },
+    { id: 'GLYCL', col1: 'GHMT2r, THFAT', col2: 'ECOLIN_RS14440', col3: '0', col4: '0.859271' },
+    { id: 'GLYCL', col1: 'GLYCL', col2: 'ECOLIN_RS16175, ECOLIN_RS16165', col3: '0', col4: '0.880005' },
+    { id: 'GLYCL', col1: 'PSERT, OHPBAT', col2: 'ECOLIN_RS04805', col3: '0', col4: '0.838756' },
+    { id: 'GLYCL', col1: 'PSP_L', col2: 'ECOLIN_RS25185', col3: '0', col4: '0.847929' },
+    { id: 'GLUDy', col1: '4HTHRA', col2: 'ECOLIN_RS04630', col3: '-7.528802', col4: '0.880325' },
+    { id: 'GLUDy', col1: 'DSERt2pp, ALAt2pp_copy1, DALAt2pp, BALAt2pp, GLYt2pp', col2: 'ECOLIN_RS24450', col3: '-7.538280', col4: '0.880164' },
+    { id: 'GLUDy', col1: 'ENO', col2: 'ECOLIN_RS15500', col3: '-13.732623', col4: '0.704571' },
+    { id: 'GLUDy', col1: 'TRPAS2', col2: 'ECOLIN_RS21355', col3: '-7.572622', col4: '0.879762' }
+];
+
+
+
+const table3: formData[] = [
+    { id: 'None (WT)', col1: '0.880331', col2: '10.799070', col3: "1", col4: "1" },
+    { id: 'ECOLIN_RS15500', col1: '0.704571', col2: '1.992122', col3: '80.034818', col4: '18.447165' },
+    { id: 'ECOLIN_RS04630, ECOLIN_RS15500', col1: '0.704571', col2: '1.919909', col3: '80.034818', col4: '17.778463' },
+    { id: 'ECOLIN_RS15500, ECOLIN_RS21355', col1: '0.704571', col2: '1.919909', col3: '80.034818', col4: '17.778463' },
+    { id: 'ECOLIN_RS04630, ECOLIN_RS15500, ECOLIN_RS21355', col1: '0.704571', col2: '1.883483', col3: '80.034818', col4: '17.441162' },
+    { id: 'ECOLIN_RS16175, ECOLIN_RS15500, ECOLIN_RS21355', col1: '0.703909', col2: '1.883483', col3: '79.959584', col4: '17.441162' },
+    { id: 'ECOLIN_RS16175, ECOLIN_RS16165, ECOLIN_RS15500, ECOLIN_RS21355', col1: '0.703909', col2: '1.876610', col3: '79.959584', col4: '17.377514' }
+];
+
+
+
 // sidenavbar begin
 interface SideNavbarProps {
-  activeLink: string;
+    activeLink: string;
 }
 const SideNavbar: React.FC<SideNavbarProps> = ({ activeLink }) => {
-  return (
-    <div className="side-navbar">
-      <Nav className="flex-column">
-        <Nav.Link as={Link} to="section1" smooth={true} duration={500} className={activeLink === 'section1' ? 'active' : 'notActive'}>ODE Model of Biochemical Reactions</Nav.Link>
-        <Nav.Link as={Link} to="section2" smooth={true} duration={500} className={activeLink === 'section2' ? 'active' : 'notActive'}>Section 2</Nav.Link>
-        <Nav.Link as={Link} to="section3" smooth={true} duration={500} className={activeLink === 'section3' ? 'active' : 'notActive'}>Section 3</Nav.Link>
-        {/* 添加更多导航链接 */}
-      </Nav>
-    </div>
-  );
+    return (
+        <div className="side-navbar">
+            <Nav className="flex-column">
+                <Nav.Link as={Link} to="section1" smooth={true} duration={500} className={activeLink === 'section1' ? 'active' : 'notActive'}>ODE Model of Biochemical Reactions</Nav.Link>
+                <Nav.Link as={Link} to="section2" smooth={true} duration={500} className={activeLink === 'section2' ? 'active' : 'notActive'}>Metabolic Engineering Strategy to Reduce Ammonia Production</Nav.Link>
+                <Nav.Link as={Link} to="section3" smooth={true} duration={500} className={activeLink === 'section3' ? 'active' : 'notActive'}>Section 3</Nav.Link>
+                {/* 添加更多导航链接 */}
+            </Nav>
+        </div>
+    );
 };
 // sidenavbar end 
 
 export function Model() {
-  // sidenavbar begin
-  const [activeLink, setActiveLink] = useState<string>('');
+    // sidenavbar begin
+    const [activeLink, setActiveLink] = useState<string>('');
     useEffect(() => {
-      const handleScroll = () => {
-        const sections = document.querySelectorAll('.element');
-        let currentSection = '';
-          sections.forEach(section => {
-            const sectionTop = section.getBoundingClientRect().top;
-            if (sectionTop <= window.innerHeight / 2 && sectionTop > -section.clientHeight) {
-              currentSection = section.id;
-            }
-          });
-        setActiveLink(currentSection);
-      };
-      window.addEventListener('scroll', handleScroll);
-      return () => window.removeEventListener('scroll', handleScroll);
+        const handleScroll = () => {
+            const sections = document.querySelectorAll('.element');
+            let currentSection = '';
+            sections.forEach(section => {
+                const sectionTop = section.getBoundingClientRect().top;
+                if (sectionTop <= window.innerHeight / 2 && sectionTop > -section.clientHeight) {
+                    currentSection = section.id;
+                }
+            });
+            setActiveLink(currentSection);
+        };
+        window.addEventListener('scroll', handleScroll);
+        return () => window.removeEventListener('scroll', handleScroll);
     }, []);
     // sidenavbar end
 
-    const [isOpen, setIsOpen] = useState(false);
-    const toggleAccordion = () => {
-      setIsOpen(!isOpen);
+    const [isOpen1, setIsOpen1] = useState(false);
+    const [isOpen2, setIsOpen2] = useState(false);
+
+    
+    const toggleAccordion1 = () => {
+        setIsOpen1(!isOpen1);
     };
 
+    const toggleAccordion2 = () => {
+        setIsOpen2(!isOpen2);
+    };
 
-  return (
-    <>
-    <div className="custom-header-model">
-<h1 className="centered-title">
-<img 
-                src="https://static.igem.wiki/teams/5378/header/model.png"
-                alt="safety header"
-                className="header-img"
-              />
-                            <img 
-                src="https://static.igem.wiki/teams/5378/header/header-bar.webp"
-                alt="safety header"
-                className="header-bar"
-              />
-</h1>
-</div>
-
-      <div className="row  bg-rice_yellow">
-        <div className="col-2">
-          <SideNavbar activeLink={activeLink}          />
-        </div>
-        
-        <div className="col-10 model-font">
-        <Element name="section1" className="element" id='section1'>
-              <h2 className="center-text mt-5">1. ODE Model of Biochemical Reactions</h2>
-                 <h3>1.1 Oxidation of Phenylethylamine</h3>
-                  <p>Firstly, phenylethylamine (PEA) diffuses through the outer membrane of <em>Escherichia coli</em> into the periplasmic space, where it interacts with TynA.</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content' >
-                  <span className = 'formula_line'><MathJax.Node  formula={`{PEA_{gut}\\overset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\underset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\rightleftharpoons}}  PEA_{peri}}`} /> </span>   
-                      <span className='formula_number'>1</span>
-                  </div>
-              </MathJax.Provider>
-              <p>According to the law of mass action, this process can be represented by an ordinary differential equation (ODE) as follows</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content' >
-                  <span className = 'formula_line'> <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{peri}}([PEA_{gut}] - [PEA_{peri}])`} /> </span>   
-                      <span className='formula_number'>2</span>
-
-                  </div>
-
-                  <div className='indent formula_content'>
-                      <span className = 'formula_line'> <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{gut}}([PEA_{peri}] - [PEA_{gut}])`} />   </span>                   
-                      <span className='formula_number'>3</span>
-                  </div>
-              </MathJax.Provider>
-
-            <p>where <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{\\mathrm{diff\\_PEA}}`} />
-                  </span>
-              </MathJax.Provider> represents the passive diffusion constant of phenylethylamine. The amount of substance passing through the membrane per unit time is equal to the product of the concentration difference across the membrane and the passive diffusion rate constant.</p>
-          <p>Subsequently, monoamine oxidase TynA oxidizes phenylethylamine into phenylacetaldehyde (PA) and ammonia.</p>
-          <MathJax.Provider>
-                  <div className='indent formula_content'>
-                    <span className = 'formula_line'><MathJax.Node formula={` PEA\\xrightarrow[K_{M\\_TynA},k_{cat\\_TynA}]{TynA} PA_{peri} + NH_{3\\_peri}`} /> </span>   
-                      <span className='formula_number'>4</span>
-                  </div>
-              </MathJax.Provider>
-<p>The Michaelis-Menten mechanism describes the enzymatic conversion of a substrate <MathJax.Provider> 
-                  <span>
-                      <MathJax.Node inline formula={`S`} />
-                  </span>
-                 </MathJax.Provider> into a product <MathJax.Provider>
-                      <MathJax.Node inline formula={`P`} />
-              </MathJax.Provider> via an enzyme <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`E`} />
-                  </span>
-              </MathJax.Provider>, through the formation of an enzyme-substrate complex <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`ES`} />
-                  </span>
-              </MathJax.Provider>. The basic reaction scheme is:</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'><MathJax.Node formula={`{{E+S}\\overset{k_{f1}}{\\underset{k_{r1}}{\\rightleftharpoons}}  ES \\xrightarrow[]{k_{cat}}E + P}`} /> </span>   
-                      <span className='formula_number'>5</span>
-                  </div>
-              </MathJax.Provider>
-<p>where <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{f1}`} />
-                  </span>
-              </MathJax.Provider> is the rate constant for the formation of the enzyme-substrate complex, <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{r1}`} />
-                  </span>
-              </MathJax.Provider> is the rate constant for the dissociation of the complex back to free enzyme and substrate, and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{cat}`} />
-                  </span>
-              </MathJax.Provider> is the rate constant for the conversion of the enzyme-substrate complex into product and free enzyme.</p>
-
-        <p>The derivation relies on two main assumptions:</p>
-
-        <p>1. Steady-State Approximation: The concentration of the enzyme-substrate complex remains constant during the reaction because its formation and breakdown reach a dynamic equilibrium</p>
-
-<p>Thus, the rate of formation of <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`ES`} />
-                  </span>
-              </MathJax.Provider> equals its breakdown</p>
-
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                        <span className = 'formula_line'>
-                      <MathJax.Node formula={`k_{f1}[E][S] = \\left( k_{r1} + k_{\\mathrm{cat}} \\right) [ES]`} /> </span>   
-                      <span className='formula_number'>6</span>
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`[ES] = \\frac{ k_{f1}[E][S] }{ k_{r1} + k_{\\mathrm{cat}} }`} />  </span>                                        
-                      <span className='formula_number'>7</span>
-                  </div>
-
-              </MathJax.Provider>
-
-<p>2. Total Enzyme Concentration: The total concentration of the enzyme is constant and can be expressed as the sum of free enzyme and enzyme bound in the enzyme-substrate complex.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`[E_{\\text{total}}] = [E] + [ES]`} />  </span>      
-                      <span className='formula_number'>8</span>           
-                  </div>
-              </MathJax.Provider>               
-               <p>Substitute <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`[E] = [E_{\\text{total}}] - [ES]
+
+
+    return (
+        <>
+
+            <div className="custom-header-model">
+                <h1 className="centered-title">
+                    <img
+                        src="https://static.igem.wiki/teams/5378/header/model.png"
+                        alt="safety header"
+                        className="header-img"
+                    />
+                    <img
+                        src="https://static.igem.wiki/teams/5378/header/header-bar.webp"
+                        alt="safety header"
+                        className="header-bar"
+                    />
+                </h1>
+            </div>
+            <div className="row  bg-rice_yellow">
+                <div className="col-2">
+                    <SideNavbar activeLink={activeLink} />
+                </div>
+
+                <div className="col-10 model-font">
+                    <Element name="section1" className="element" id='section1'>
+                       
+
+                        <h2 className="center-text mt-5">1. ODE Model of Biochemical Reactions</h2>
+                        <h3>1.1 Oxidation of Phenylethylamine</h3>
+                        <p>Firstly, phenylethylamine (PEA) diffuses through the outer membrane of <em>Escherichia coli</em> into the periplasmic space, where it interacts with TynA.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content' >
+                                <span className='formula_line'><MathJax.Node formula={`{PEA_{gut}\\overset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\underset{k_{\\text{diff}}\\_{\\text{PEA}}}{\\rightleftharpoons}}  PEA_{peri}}`} /> </span>
+                                <span className='formula_number'>1</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>According to the law of mass action, this process can be represented by an ordinary differential equation (ODE) as follows</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content' >
+                                <span className='formula_line'> <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{peri}}([PEA_{gut}] - [PEA_{peri}])`} /> </span>
+                                <span className='formula_number'>2</span>
+
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'> <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{gut}}([PEA_{peri}] - [PEA_{gut}])`} />   </span>
+                                <span className='formula_number'>3</span>
+                            </div>
+                        </MathJax.Provider>
+
+                        <p>where <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`k_{\\mathrm{diff\\_PEA}}`} />
+                            </span>
+                        </MathJax.Provider> represents the passive diffusion constant of phenylethylamine. The amount of substance passing through the membrane per unit time is equal to the product of the concentration difference across the membrane and the passive diffusion rate constant.</p>
+                        <p>Subsequently, monoamine oxidase TynA oxidizes phenylethylamine into phenylacetaldehyde (PA) and ammonia.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'><MathJax.Node formula={` PEA\\xrightarrow[K_{M\\_TynA},k_{cat\\_TynA}]{TynA} PA_{peri} + NH_{3\\_peri}`} /> </span>
+                                <span className='formula_number'>4</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>The Michaelis-Menten mechanism describes the enzymatic conversion of a substrate <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`S`} />
+                            </span>
+                        </MathJax.Provider> into a product <MathJax.Provider>
+                                <MathJax.Node inline formula={`P`} />
+                            </MathJax.Provider> via an enzyme <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`E`} />
+                                </span>
+                            </MathJax.Provider>, through the formation of an enzyme-substrate complex <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`ES`} />
+                                </span>
+                            </MathJax.Provider>. The basic reaction scheme is:</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'><MathJax.Node formula={`{{E+S}\\overset{k_{f1}}{\\underset{k_{r1}}{\\rightleftharpoons}}  ES \\xrightarrow[]{k_{cat}}E + P}`} /> </span>
+                                <span className='formula_number'>5</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>where <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`k_{f1}`} />
+                            </span>
+                        </MathJax.Provider> is the rate constant for the formation of the enzyme-substrate complex, <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{r1}`} />
+                                </span>
+                            </MathJax.Provider> is the rate constant for the dissociation of the complex back to free enzyme and substrate, and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{cat}`} />
+                                </span>
+                            </MathJax.Provider> is the rate constant for the conversion of the enzyme-substrate complex into product and free enzyme.</p>
+
+                        <p>The derivation relies on two main assumptions:</p>
+
+                        <p>1. Steady-State Approximation: The concentration of the enzyme-substrate complex remains constant during the reaction because its formation and breakdown reach a dynamic equilibrium</p>
+
+                        <p>Thus, the rate of formation of <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`ES`} />
+                            </span>
+                        </MathJax.Provider> equals its breakdown</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`k_{f1}[E][S] = \\left( k_{r1} + k_{\\mathrm{cat}} \\right) [ES]`} /> </span>
+                                <span className='formula_number'>6</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`[ES] = \\frac{ k_{f1}[E][S] }{ k_{r1} + k_{\\mathrm{cat}} }`} />  </span>
+                                <span className='formula_number'>7</span>
+                            </div>
+
+                        </MathJax.Provider>
+
+                        <p>2. Total Enzyme Concentration: The total concentration of the enzyme is constant and can be expressed as the sum of free enzyme and enzyme bound in the enzyme-substrate complex.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`[E_{\\text{total}}] = [E] + [ES]`} />  </span>
+                                <span className='formula_number'>8</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>Substitute <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`[E] = [E_{\\text{total}}] - [ES]
 `} />
-                  </span>
-              </MathJax.Provider>into the steady-state equation and solve for <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`[ES]
+                            </span>
+                        </MathJax.Provider>into the steady-state equation and solve for <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`[ES]
 `} />
-                  </span>
-              </MathJax.Provider></p>
-
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`[ES] = \\frac{[E_{\\text{total}}] [S]}{\\frac{k_{r1} + k_{\\text{cat}}}{k_{f1}} + [S]}`} />  </span>                 
-                      <span className='formula_number'>9</span>
-                  </div>
-              </MathJax.Provider>    
-<p>The Michaelis constant  <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_M`} />
-                  </span>
-              </MathJax.Provider> is defined as</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`K_M = \\frac{k_{r1} + k_{\\text{cat}}}{k_{f1}}
-`} />                </span>   
-        <span className='formula_number'>10</span>
-                  </div>
-              </MathJax.Provider>  
-<p>This simplifies the expression for  to</p>
-
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`ES = \\frac{ {[E\\_total][S]} }{K_M + [S]}`} />  </span>                 
-              
-                  <span className='formula_number'>11</span>    </div>
-              </MathJax.Provider>  
-
-<p>The rate of product formation is 
-</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`v_0 = k_{cat}[ES]`} />   </span>    
-                      <span className='formula_number'>12</span>         
-                  </div>
-              </MathJax.Provider>  
-<p>Substituting <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`[ES]`} />
-                  </span>
-              </MathJax.Provider> gives the Michaelis-Menten equation:</p>
-
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`v_0 = \\frac{V_{max}[s]}{K_M+[S]}`} />  </span> 
-                      <span className='formula_number'>13</span>             
-                  </div>
-              </MathJax.Provider>  
-
-              <p>where <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`V_{max} = k_{cat}[E_{total}]`} />
-                  </span>
-              </MathJax.Provider> </p>
-
-<p>Considering that <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{cat}`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_M`} />
-                  </span>
-              </MathJax.Provider> are more readily available, we use them to express the Michaelis-Menten equation</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                       
-                      <MathJax.Node formula={`v_0 = \\frac{k{cat}[E_{total}][S]}{K_M +[S]}`} />               
-                  </div>
-              </MathJax.Provider>  
-<p>This process can be described using Michaelis-Menten kinetics as follows</p>
-
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /></span> 
-                      <span className='formula_number'>14</span>             
-   
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /> </span>                                      
-                      <span className='formula_number'>15</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = -\\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /></span>                                       
-                      <span className='formula_number'>16</span>             
-
-                  </div>
-              </MathJax.Provider>
-
-<p>The phenylacetaldehyde and ammonia formed in this reaction cross the inner membrane into the cytoplasm, where they participate in further oxidation and metabolic processes.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`PA_{peri}\\overset{}{\\underset{}{\\rightleftharpoons}}PA_{cyto}`} /></span> 
-                      <span className='formula_number'>17</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`NH_{3\\_peri}\\overset{}{\\underset{}{\\rightleftharpoons}}NH_{3\\_cyto}`} />   </span>                                    
-                      <span className='formula_number'>18</span>             
-
-                  </div>
-              </MathJax.Provider>
-<p>According to the law of mass action</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{cyto}}([PA_{peri}]-[PA_{cyto}])`} /></span> 
-                      <span className='formula_number'>19</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{peri}}([PA_{cyto}]-[PA_{peri}])`} />  </span>                                     
-                      <span className='formula_number'>20</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}])`} /></span> 
-                      <span className='formula_number'>21</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{peri}}([NH_{3\\_cyto}]-[NH_{3\\_peri}])`} />  </span>                                     
-                      <span className='formula_number'>22</span>             
-
-                  </div>
-
-              </MathJax.Provider>
-
-              <h3>1.2 Production of GS and TPH1</h3>
-<p>The process by which FeaR catalyzes the further oxidation of phenylacetaldehyde into phenylacetic acid (PAA) in the cytoplasm can be broken down into two steps according to the principles of Michaelis-Menten kinetics. The phenylacetic acid produced by the reaction then diffuses out of the cell.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`FeaR+PA_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}FearR-PA`} /></span> 
-                      <span className='formula_number'>23</span>             
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`FeaR-PA\\xrightarrow{}FearR+PAA_{cyto}`} />     </span>   
-                      <span className='formula_number'>24</span>             
-                               
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`PAA_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}PAA_{gut}`} /></span>                                       
-                      <span className='formula_number'>25</span>             
-
-                  </div>
-              </MathJax.Provider>
-<p>The FeaR-phenylacetaldehyde complex can bind and activate the PTynA promoter. In this case, the concentration of the enzyme-substrate complex <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`[FeaR-PA]`} />
-                  </span>
-              </MathJax.Provider> is no longer constant, violating the two main assumptions of the Michaelis-Menten equation. However, the relationship between <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_M`} />
-                  </span>
-              </MathJax.Provider> and the rate constants <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{f1}`} />
-                  </span>
-              </MathJax.Provider>, <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{r1}`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{cat}`} />
-                  </span>
-              </MathJax.Provider> still holds.</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`K_M = \\frac{k_{r1}+k_{cat}}{k_{f1}}`} /></span> 
-                      <span className='formula_number'>26</span>             
-
-
-                  </div>
-              </MathJax.Provider>
-        <p>Since the constants depend only on the intrinsic properties of the enzyme and substrate, we can use the values of <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_M`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{cat}`} />
-                  </span>
-              </MathJax.Provider> to solve for <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{f1}`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{r1}`} />
-                  </span>
-              </MathJax.Provider>. </p>
-
-
-<p>If we assume that the <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`FeaR-PA`} />
-                  </span>
-              </MathJax.Provider> complex is unlikely to dissociate back into <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`FeaR`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`PA`} />
-                  </span>
-              </MathJax.Provider> after formation, i.e., <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{r1}\\approx 0`} />
-                  </span>
-              </MathJax.Provider>, then we have</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`k_{f1} \\approx \\frac{k_{cat}}{K_m}`} /></span> 
-                      <span className='formula_number'>27</span>             
-
-
-                  </div>
-              </MathJax.Provider>
-<p>Based on the two-step reaction process described, we can establish the following system of ODEs.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} - k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} /></span> 
-                      <span className='formula_number'>28</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} + k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} /> </span>                                      
-                      <span className='formula_number'>29</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}}`} /> </span>                                      
-                      <span className='formula_number'>30</span> 
-                  </div>
-                  <div className='indent formula_content' id='long_formula'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{cyto}]}{\\mathrm{d}t} = k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] + \\frac{k_{diff\\_PAA}}{V_{cyto}}([PAA_{gut}]-[PAA_{cyto}])`} /> </span>                                      
-                      <span className='formula_number'>31</span> 
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PAA}}{V_{gut}}([PAA_{cyto}]-[PAA_{gut}])`} />   </span>                                    
-                      <span className='formula_number'>32</span> 
-                  </div>
-
-              </MathJax.Provider>
-
-<p>The process by which the <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`FeaR-PA`} />
-                  </span>
-              </MathJax.Provider> complex activates the PTynA promoter upstream of GS or TPH1 can be described as follows</p>
-
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`P_{TynA\\_GS}+FeaR-PA\\overset{}{\\underset{}{\\rightleftharpoons}}P_{TynA\\_GS\\_active}`} /></span> 
-                      <span className='formula_number'>33</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`P_{TynA\\_TPH1}+FeaR-PA\\overset{}{\\underset{}{\\rightleftharpoons}}P_{TynA\\_TPH1\\_active}`} /> </span>                                      
-                      <span className='formula_number'>34</span> 
-                  </div>
-              </MathJax.Provider>
-              <p>The corresponding set of ODEs is</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /></span> 
-                      <span className='formula_number'>35</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />  </span>                                     
-                      <span className='formula_number'>36</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /></span>                                       
-                      <span className='formula_number'>37</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>                                       
-                      <span className='formula_number'>38</span> 
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>                                       
-                      <span className='formula_number'>39</span> 
-                  </div>
-
-              </MathJax.Provider>
-<p>where <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{f\\_PtynA}`} />
-                  </span>
-              </MathJax.Provider> is the rate constant for the binding of <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`FeaR-PA`} />
-                  </span>
-              </MathJax.Provider> to the PTynA promoter and the formation of the activated promoter state, while <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`k_{r_PtynA}`} />
-                  </span>
-              </MathJax.Provider> is the rate constant for the dissociation of the activated promoter and its inactivation.</p>
-
-<p>The activated promoter initiates the transcription of downstream genes, producing the corresponding mRNA, while we also take into account the process of mRNA degradation.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`P_{TynA\\_GS\\_active}  \\rightarrow P_{TynA\\_GS\\_active} + mRNA_{GS}`} /></span> 
-                      <span className='formula_number'>40</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`P_{TynA\\_TPH1\\_active} \\rightarrow  P_{TynA\\_TPH1\\_active}+mRNA_{TPH1}`} />  </span>                                     
-                      <span className='formula_number'>41</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`mRNA_{GS}\\rightarrow \\varnothing`} />  </span>   
-                      <span className='formula_number'>42</span>                                   
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`mRNA_{TPH1}\\rightarrow \\varnothing`} /> </span>    
-                      <span className='formula_number'>43</span>                                   
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{GS}]}{\\mathrm{d}t} = k_{mRNA\\_GS}[P_{TynA\\_GS\\_active}] - d_{mRNA\\_GS}[mRNA_{GS}]`} /> </span>                                      
-                      <span className='formula_number'>44</span> 
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{TPH1}]}{\\mathrm{d}t} = k_{mRNA\\_TPH1}[P_{TynA\\_TPH1\\_active}] - d_{mRNA\\_TPH1}[mRNA_{TPH1}]`} /> </span>                                      
-                      <span className='formula_number'>45</span> 
-                  </div>
-              </MathJax.Provider>
-<p>Next is the process of translation and degradation of the target protein.</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`mRNA_{GS}\\rightarrow mRNA_{GS}+GS`} /></span> 
-                      <span className='formula_number'>46</span> 
-
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`mRNA_{TPH1}\\rightarrow mRNA_{TPH1}+TPH1`} /> </span>  
-                      <span className='formula_number'>48</span>                                     
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`GS\\rightarrow \\varnothing`} /> </span>          
-                      <span className='formula_number'>49</span>                             
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`TPH1\\rightarrow \\varnothing`} />  </span> 
-                      <span className='formula_number'>50</span>                                     
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[GS]}{\\mathrm{d}t} = p_{GS}[mRNA_{GS}] - d_{GS}[GS]`} /> </span>                                      
-                      <span className='formula_number'>51</span> 
-                  </div>
-
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[TPH1]}{\\mathrm{d}t} = p_{TPH1}[mRNA_{TPH1}] - d_{TPH1}[TPH1]`} /> </span>                                      
-                      <span className='formula_number'>52</span> 
-                  </div>
-              </MathJax.Provider>
-
-
-              <h3>1.3 Metabolism of Ammonia and Tryptophan</h3>
-                <p>Under the catalysis of GS, glutamate accepts ammonia and is converted into glutamine. Glutamate in the gut diffuses into the cytoplasm, where it is converted into glutamine. The glutamine then diffuses back into the gut, acting as a carrier molecule.</p>
-                <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`Glu_{gut}\\overset{}{\\underset{}{\\rightleftharpoons}}Glu_{cyto}`} /></span> 
-                      <span className='formula_number'>53</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`NH_{3_{Peri}}\\overset{}{\\underset{}{\\rightleftharpoons}}NH_{3_{cyto}}`} />   </span>                                    
-                      <span className='formula_number'>54</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`Glu_{cyto}+ NH_{3\\_cyto}\\xrightarrow[] Gln_{cyto}`} /> </span> 
-                      <span className='formula_number'>55</span>                                      
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`Gln_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}} Gln_{gut}`} />  </span>                                     
-                      <span className='formula_number'>56</span> 
-                  </div>
-
-              </MathJax.Provider>
-              <p>For an enzyme-catalyzed reaction involving two substrates that form a single product, the Michaelis-Menten equation can be extended to account for the involvement of both substrates. The general reaction can be written as</p>
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`E+A+B\\overset{k_{f1}}{\\underset{k_{r1}}{\\rightleftharpoons}}EAB \\xrightarrow{k_{cat}}E+P]`} /></span> 
-                      <span className='formula_number'>57</span> 
-                  </div>
-              </MathJax.Provider>
-<p>The Michaelis-Menten equation is</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`v_0 = \\frac{V_{max} [A] [B]}{K_{M\\_A}[B] + K_{M\\_B}[A] + [A][B]}`} /></span> 
-                      <span className='formula_number'>58</span> 
-                  </div>
-              </MathJax.Provider>
-<p>where <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`V_{max}`} />
-                  </span>
-              </MathJax.Provider> is the maximum reaction velocity, given by <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`V_{max}=k_{cat}[E_{total}]`} />
-                  </span>
-              </MathJax.Provider>, while <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_{M\\_A}`} />
-                  </span>
-              </MathJax.Provider> and<MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`K_{M\\_B}`} />
-                  </span>
-              </MathJax.Provider> are the Michaelis constant for substrate<MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`A`} />
-                  </span>
-              </MathJax.Provider> and <MathJax.Provider>
-                  <span>
-                      <MathJax.Node inline formula={`B`} />
-                  </span>
-              </MathJax.Provider> respectively. </p>
-
-<p>the corresponding set of ODEs is</p>
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{gut}}([Glu_{cyto}]-[Glu_{gut}])`} /></span> 
-                      <span className='formula_number'>59</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{cyto}}([Glu_{gut}]-[Glu_{cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /></span>                                       
-                      <span className='formula_number'>60</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /> </span>                                      
-                      <span className='formula_number'>61</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])} + \\frac{k_{diff\\_Gln}}{V_{cyto}}([Gln_{gut}]-[Gln_{cyto}])`} /></span>                                       
-                      <span className='formula_number'>62</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Gln}}{V_{gut}}([Gln_{cyto}]-[Gln_{gut}])`} /></span>                                       
-                      <span className='formula_number'>63</span> 
-                  </div>
-
-              </MathJax.Provider>
-<p>TPH1 converts tryptophan that enters the cytoplasm into 5-hydroxytryptophan, which is then transported from the cytoplasm into the gut. The corresponding reaction equations and ODEs are as follows</p>
-               
-<MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`Trp_{gut}\\overset{}{\\underset{}{\\rightleftharpoons}}Trp_{cyto}`} /></span> 
-                      <span className='formula_number'>64</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`Trp_{cyto}\\xrightarrow{TPH1}5-HTP_{cyto}`} /></span>     
-                      <span className='formula_number'>65</span>                                   
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`5-HTP_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}5-HTP_{gut}`} /></span>                                       
-                      <span className='formula_number'>66</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{gut}}([Trp_{cyto}]-[Trp_{gut}])`} /> </span>                                      
-                      <span className='formula_number'>67</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{cyto}}([Trp_{gut}]-[Trp_{cyto}]) - \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]}`} /></span>                                       
-                      <span className='formula_number'>68</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]} - \\frac{k_{diff\\_5-HTP}}{V_{cyto}}([5\\mathrm{-}HTP_{gut}]-[5\\mathrm{-}HTP_{cyto}])`} /></span>                                       
-                      <span className='formula_number'>69</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_5-HTP}}{V_{gut}}([5\\mathrm{-}HTP_{cyto}]-[5\\mathrm{-}HTP_{gut}])`} /></span>                                       
-                      <span className='formula_number'>70</span> 
-                  </div>
-
-              </MathJax.Provider>
-              <h3>1.4 Full ODE Model</h3>
-               
-              <MathJax.Provider>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{gut}}([PEA_{peri}]-[PEA_{gut}])`} /></span> 
-                      <span className='formula_number'>71</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{peri}}([PEA_{gut}]-[PEA_{peri}]) -\\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /> </span>                                      
-                      <span className='formula_number'>72</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]} + \\frac{k_{diff\\_PA}}{V_{peri}}([PA_{cyto}]-[PA_{peri}])`} /> </span>                                      
-                      <span className='formula_number'>73</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]} + \\frac{k_{diff\\_NH3}}{V_{peri}}([NH_{3\\_cyto}]-[NH_{3\\_peri}])`} />  </span>                                     
-                      <span className='formula_number'>74</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{cyto}}([PA_{peri}]-[PA_{cyto}]) - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}}`} /> </span>                                      
-                      <span className='formula_number'>75</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /></span>                                       
-                      <span className='formula_number'>76</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{cyto}]}{\\mathrm{d}t} = k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] + \\frac{k_{diff\\_PAA}}{V_{cyto}}([PAA_{gut}]-[PAA_{cyto}])`} /> </span>                                      
-                      <span className='formula_number'>77</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PAA}}{V_{gut}}([PAA_{cyto}]-[PAA_{gut}])`} /></span> 
-                      <span className='formula_number'>78</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /> </span>                                      
-                      <span className='formula_number'>79</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />   </span>                                    
-                      <span className='formula_number'>80</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} />  </span>                                     
-                      <span className='formula_number'>81</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>                                       
-                      <span className='formula_number'>82</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} + k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} />     </span>                                    
-                      <span className='formula_number'>83</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} - k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />  </span>                                     
-                      <span className='formula_number'>84</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{GS}]}{\\mathrm{d}t} = k_{mRNA\\_GS}[P_{TynA\\_GS\\_active}] - d_{mRNA\\_GS}[mRNA_{GS}]`} /></span> 
-                      <span className='formula_number'>85</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{TPH1}]}{\\mathrm{d}t} = k_{mRNA\\_TPH1}[P_{TynA\\_TPH1\\_active}] - d_{mRNA\\_TPH1}[mRNA_{TPH1}]`} />  </span>                                     
-                      <span className='formula_number'>86</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[GS]}{\\mathrm{d}t} = p_{GS}[mRNA_{GS}] - d_{GS}[GS]`} />  </span>                                     
-                      <span className='formula_number'>87</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[TPH1]}{\\mathrm{d}t} = p_{TPH1}[mRNA_{TPH1}] - d_{TPH1}[TPH1]`} /> </span>                                      
-                      <span className='formula_number'>88</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{gut}}([Glu_{cyto}]-[Glu_{gut}])`} /> </span>                                      
-                      <span className='formula_number'>89</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{cyto}}([Glu_{gut}]-[Glu_{cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /> </span>                                      
-                      <span className='formula_number'>90</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])} + \\frac{k_{diff\\_Gln}}{V_{cyto}}([Gln_{gut}]-[Gln_{cyto}])`} /> </span>                                      
-                      <span className='formula_number'>91</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Gln}}{V_{gut}}([Gln_{cyto}]-[Gln_{gut}])`} /></span> 
-                      <span className='formula_number'>92</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{gut}}([Trp_{cyto}]-[Trp_{gut}])`} /></span>                                       
-                      <span className='formula_number'>93</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{cyto}}([Trp_{gut}]-[Trp_{cyto}]) - \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]}`} /></span>                                       
-                      <span className='formula_number'>94</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]} - \\frac{k_{diff\\_5-HTP}}{V_{cyto}}([5\\mathrm{-}HTP_{gut}]-[5\\mathrm{-}HTP_{cyto}])`} /> </span>                                      
-                      <span className='formula_number'>95</span> 
-                  </div>
-                  <div className='indent formula_content'>
-                  <span className = 'formula_line'>
-                      <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_5-HTP}}{V_{gut}}([5\\mathrm{-}HTP_{cyto}]-[5\\mathrm{-}HTP_{gut}])`} /> </span>                                     
-                      <span className='formula_number'>96</span> 
-                  </div>
-                  </MathJax.Provider>
-              <h3>Initial Conditions</h3>
-<p>Except for the variables mentioned below, the initial values of all other variables are set to 0.</p>
-<table>
-    <tr>
-        <td>Variable 变量名</td>
-        <td>Value 数值</td>
-        <td>Units 单位</td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[PEA_{gut}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[TynA]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[FeaR]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[P_{TynA\\_GS}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td>$<MathJax.Node inline formula={`[P_{TynA\\_TPH1}]`} />$</td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[Glu_{gut}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[Glu_{cyto}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[Gln_{gut}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[Gln_{cyto}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-    <tr>
-        <td><MathJax.Node inline formula={`[Trp_{gut}]`} /></td>
-        <td></td>
-        <td></td>
-    </tr>
-</table>
-
-               </Element>
-       
-               <div className="bd-callout bd-callout-info bg-gray">
-                  <h1>What do we do to ...? See...</h1>
+                                </span>
+                            </MathJax.Provider></p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`[ES] = \\frac{[E_{\\text{total}}] [S]}{\\frac{k_{r1} + k_{\\text{cat}}}{k_{f1}} + [S]}`} />  </span>
+                                <span className='formula_number'>9</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>The Michaelis constant  <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`K_M`} />
+                            </span>
+                        </MathJax.Provider> is defined as</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`K_M = \\frac{k_{r1} + k_{\\text{cat}}}{k_{f1}}
+`} />                </span>
+                                <span className='formula_number'>10</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>This simplifies the expression for  to</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`ES = \\frac{ {[E\\_total][S]} }{K_M + [S]}`} />  </span>
+
+                                <span className='formula_number'>11</span>    </div>
+                        </MathJax.Provider>
+
+                        <p>The rate of product formation is
+                        </p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`v_0 = k_{cat}[ES]`} />   </span>
+                                <span className='formula_number'>12</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>Substituting <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`[ES]`} />
+                            </span>
+                        </MathJax.Provider> gives the Michaelis-Menten equation:</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`v_0 = \\frac{V_{max}[s]}{K_M+[S]}`} />  </span>
+                                <span className='formula_number'>13</span>
+                            </div>
+                        </MathJax.Provider>
+
+                        <p>where <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`V_{max} = k_{cat}[E_{total}]`} />
+                            </span>
+                        </MathJax.Provider> </p>
+
+                        <p>Considering that <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`k_{cat}`} />
+                            </span>
+                        </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`K_M`} />
+                                </span>
+                            </MathJax.Provider> are more readily available, we use them to express the Michaelis-Menten equation</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+
+                                <MathJax.Node formula={`v_0 = \\frac{k{cat}[E_{total}][S]}{K_M +[S]}`} />
+                            </div>
+                        </MathJax.Provider>
+                        <p>This process can be described using Michaelis-Menten kinetics as follows</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /></span>
+                                <span className='formula_number'>14</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /> </span>
+                                <span className='formula_number'>15</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = -\\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /></span>
+                                <span className='formula_number'>16</span>
+
+                            </div>
+                        </MathJax.Provider>
+
+                        <p>The phenylacetaldehyde and ammonia formed in this reaction cross the inner membrane into the cytoplasm, where they participate in further oxidation and metabolic processes.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`PA_{peri}\\overset{}{\\underset{}{\\rightleftharpoons}}PA_{cyto}`} /></span>
+                                <span className='formula_number'>17</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`NH_{3\\_peri}\\overset{}{\\underset{}{\\rightleftharpoons}}NH_{3\\_cyto}`} />   </span>
+                                <span className='formula_number'>18</span>
+
+                            </div>
+                        </MathJax.Provider>
+                        <p>According to the law of mass action</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{cyto}}([PA_{peri}]-[PA_{cyto}])`} /></span>
+                                <span className='formula_number'>19</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{peri}}([PA_{cyto}]-[PA_{peri}])`} />  </span>
+                                <span className='formula_number'>20</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}])`} /></span>
+                                <span className='formula_number'>21</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{peri}}([NH_{3\\_cyto}]-[NH_{3\\_peri}])`} />  </span>
+                                <span className='formula_number'>22</span>
+
+                            </div>
+
+                        </MathJax.Provider>
+
+                        <h3>1.2 Production of GS and TPH1</h3>
+                        <p>The process by which FeaR catalyzes the further oxidation of phenylacetaldehyde into phenylacetic acid (PAA) in the cytoplasm can be broken down into two steps according to the principles of Michaelis-Menten kinetics. The phenylacetic acid produced by the reaction then diffuses out of the cell.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`FeaR+PA_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}FearR-PA`} /></span>
+                                <span className='formula_number'>23</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`FeaR-PA\\xrightarrow{}FearR+PAA_{cyto}`} />     </span>
+                                <span className='formula_number'>24</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`PAA_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}PAA_{gut}`} /></span>
+                                <span className='formula_number'>25</span>
+
+                            </div>
+                        </MathJax.Provider>
+                        <p>The FeaR-phenylacetaldehyde complex can bind and activate the PTynA promoter. In this case, the concentration of the enzyme-substrate complex <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`[FeaR-PA]`} />
+                            </span>
+                        </MathJax.Provider> is no longer constant, violating the two main assumptions of the Michaelis-Menten equation. However, the relationship between <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`K_M`} />
+                                </span>
+                            </MathJax.Provider> and the rate constants <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{f1}`} />
+                                </span>
+                            </MathJax.Provider>, <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{r1}`} />
+                                </span>
+                            </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{cat}`} />
+                                </span>
+                            </MathJax.Provider> still holds.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`K_M = \\frac{k_{r1}+k_{cat}}{k_{f1}}`} /></span>
+                                <span className='formula_number'>26</span>
+
+
+                            </div>
+                        </MathJax.Provider>
+                        <p>Since the constants depend only on the intrinsic properties of the enzyme and substrate, we can use the values of <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`K_M`} />
+                            </span>
+                        </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{cat}`} />
+                                </span>
+                            </MathJax.Provider> to solve for <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{f1}`} />
+                                </span>
+                            </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{r1}`} />
+                                </span>
+                            </MathJax.Provider>. </p>
+
+
+                        <p>If we assume that the <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`FeaR-PA`} />
+                            </span>
+                        </MathJax.Provider> complex is unlikely to dissociate back into <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`FeaR`} />
+                                </span>
+                            </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`PA`} />
+                                </span>
+                            </MathJax.Provider> after formation, i.e., <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{r1}\\approx 0`} />
+                                </span>
+                            </MathJax.Provider>, then we have</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`k_{f1} \\approx \\frac{k_{cat}}{K_m}`} /></span>
+                                <span className='formula_number'>27</span>
+
+
+                            </div>
+                        </MathJax.Provider>
+                        <p>Based on the two-step reaction process described, we can establish the following system of ODEs.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} - k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} /></span>
+                                <span className='formula_number'>28</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} + k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} /> </span>
+                                <span className='formula_number'>29</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}}`} /> </span>
+                                <span className='formula_number'>30</span>
+                            </div>
+                            <div className='indent formula_content' id='long_formula'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{cyto}]}{\\mathrm{d}t} = k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] + \\frac{k_{diff\\_PAA}}{V_{cyto}}([PAA_{gut}]-[PAA_{cyto}])`} /> </span>
+                                <span className='formula_number'>31</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PAA}}{V_{gut}}([PAA_{cyto}]-[PAA_{gut}])`} />   </span>
+                                <span className='formula_number'>32</span>
+                            </div>
+
+                        </MathJax.Provider>
+
+                        <p>The process by which the <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`FeaR-PA`} />
+                            </span>
+                        </MathJax.Provider> complex activates the PTynA promoter upstream of GS or TPH1 can be described as follows</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`P_{TynA\\_GS}+FeaR-PA\\overset{}{\\underset{}{\\rightleftharpoons}}P_{TynA\\_GS\\_active}`} /></span>
+                                <span className='formula_number'>33</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`P_{TynA\\_TPH1}+FeaR-PA\\overset{}{\\underset{}{\\rightleftharpoons}}P_{TynA\\_TPH1\\_active}`} /> </span>
+                                <span className='formula_number'>34</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>The corresponding set of ODEs is</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /></span>
+                                <span className='formula_number'>35</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />  </span>
+                                <span className='formula_number'>36</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /></span>
+                                <span className='formula_number'>37</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>
+                                <span className='formula_number'>38</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>
+                                <span className='formula_number'>39</span>
+                            </div>
+
+                        </MathJax.Provider>
+                        <p>where <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`k_{f\\_PtynA}`} />
+                            </span>
+                        </MathJax.Provider> is the rate constant for the binding of <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`FeaR-PA`} />
+                                </span>
+                            </MathJax.Provider> to the PTynA promoter and the formation of the activated promoter state, while <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`k_{r_PtynA}`} />
+                                </span>
+                            </MathJax.Provider> is the rate constant for the dissociation of the activated promoter and its inactivation.</p>
+
+                        <p>The activated promoter initiates the transcription of downstream genes, producing the corresponding mRNA, while we also take into account the process of mRNA degradation.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`P_{TynA\\_GS\\_active}  \\rightarrow P_{TynA\\_GS\\_active} + mRNA_{GS}`} /></span>
+                                <span className='formula_number'>40</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`P_{TynA\\_TPH1\\_active} \\rightarrow  P_{TynA\\_TPH1\\_active}+mRNA_{TPH1}`} />  </span>
+                                <span className='formula_number'>41</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`mRNA_{GS}\\rightarrow \\varnothing`} />  </span>
+                                <span className='formula_number'>42</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`mRNA_{TPH1}\\rightarrow \\varnothing`} /> </span>
+                                <span className='formula_number'>43</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{GS}]}{\\mathrm{d}t} = k_{mRNA\\_GS}[P_{TynA\\_GS\\_active}] - d_{mRNA\\_GS}[mRNA_{GS}]`} /> </span>
+                                <span className='formula_number'>44</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{TPH1}]}{\\mathrm{d}t} = k_{mRNA\\_TPH1}[P_{TynA\\_TPH1\\_active}] - d_{mRNA\\_TPH1}[mRNA_{TPH1}]`} /> </span>
+                                <span className='formula_number'>45</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>Next is the process of translation and degradation of the target protein.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`mRNA_{GS}\\rightarrow mRNA_{GS}+GS`} /></span>
+                                <span className='formula_number'>46</span>
+
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`mRNA_{TPH1}\\rightarrow mRNA_{TPH1}+TPH1`} /> </span>
+                                <span className='formula_number'>48</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`GS\\rightarrow \\varnothing`} /> </span>
+                                <span className='formula_number'>49</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`TPH1\\rightarrow \\varnothing`} />  </span>
+                                <span className='formula_number'>50</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[GS]}{\\mathrm{d}t} = p_{GS}[mRNA_{GS}] - d_{GS}[GS]`} /> </span>
+                                <span className='formula_number'>51</span>
+                            </div>
+
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[TPH1]}{\\mathrm{d}t} = p_{TPH1}[mRNA_{TPH1}] - d_{TPH1}[TPH1]`} /> </span>
+                                <span className='formula_number'>52</span>
+                            </div>
+                        </MathJax.Provider>
+
+
+                        <h3>1.3 Metabolism of Ammonia and Tryptophan</h3>
+                        <p>Under the catalysis of GS, glutamate accepts ammonia and is converted into glutamine. Glutamate in the gut diffuses into the cytoplasm, where it is converted into glutamine. The glutamine then diffuses back into the gut, acting as a carrier molecule.</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`Glu_{gut}\\overset{}{\\underset{}{\\rightleftharpoons}}Glu_{cyto}`} /></span>
+                                <span className='formula_number'>53</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`NH_{3_{Peri}}\\overset{}{\\underset{}{\\rightleftharpoons}}NH_{3_{cyto}}`} />   </span>
+                                <span className='formula_number'>54</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`Glu_{cyto}+ NH_{3\\_cyto}\\xrightarrow[] Gln_{cyto}`} /> </span>
+                                <span className='formula_number'>55</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`Gln_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}} Gln_{gut}`} />  </span>
+                                <span className='formula_number'>56</span>
+                            </div>
+
+                        </MathJax.Provider>
+                        <p>For an enzyme-catalyzed reaction involving two substrates that form a single product, the Michaelis-Menten equation can be extended to account for the involvement of both substrates. The general reaction can be written as</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`E+A+B\\overset{k_{f1}}{\\underset{k_{r1}}{\\rightleftharpoons}}EAB \\xrightarrow{k_{cat}}E+P]`} /></span>
+                                <span className='formula_number'>57</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>The Michaelis-Menten equation is</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`v_0 = \\frac{V_{max} [A] [B]}{K_{M\\_A}[B] + K_{M\\_B}[A] + [A][B]}`} /></span>
+                                <span className='formula_number'>58</span>
+                            </div>
+                        </MathJax.Provider>
+                        <p>where <MathJax.Provider>
+                            <span>
+                                <MathJax.Node inline formula={`V_{max}`} />
+                            </span>
+                        </MathJax.Provider> is the maximum reaction velocity, given by <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`V_{max}=k_{cat}[E_{total}]`} />
+                                </span>
+                            </MathJax.Provider>, while <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`K_{M\\_A}`} />
+                                </span>
+                            </MathJax.Provider> and<MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`K_{M\\_B}`} />
+                                </span>
+                            </MathJax.Provider> are the Michaelis constant for substrate<MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`A`} />
+                                </span>
+                            </MathJax.Provider> and <MathJax.Provider>
+                                <span>
+                                    <MathJax.Node inline formula={`B`} />
+                                </span>
+                            </MathJax.Provider> respectively. </p>
+
+                        <p>the corresponding set of ODEs is</p>
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{gut}}([Glu_{cyto}]-[Glu_{gut}])`} /></span>
+                                <span className='formula_number'>59</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{cyto}}([Glu_{gut}]-[Glu_{cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /></span>
+                                <span className='formula_number'>60</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /> </span>
+                                <span className='formula_number'>61</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])} + \\frac{k_{diff\\_Gln}}{V_{cyto}}([Gln_{gut}]-[Gln_{cyto}])`} /></span>
+                                <span className='formula_number'>62</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Gln}}{V_{gut}}([Gln_{cyto}]-[Gln_{gut}])`} /></span>
+                                <span className='formula_number'>63</span>
+                            </div>
+
+                        </MathJax.Provider>
+                        <p>TPH1 converts tryptophan that enters the cytoplasm into 5-hydroxytryptophan, which is then transported from the cytoplasm into the gut. The corresponding reaction equations and ODEs are as follows</p>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`Trp_{gut}\\overset{}{\\underset{}{\\rightleftharpoons}}Trp_{cyto}`} /></span>
+                                <span className='formula_number'>64</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`Trp_{cyto}\\xrightarrow{TPH1}5-HTP_{cyto}`} /></span>
+                                <span className='formula_number'>65</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`5-HTP_{cyto}\\overset{}{\\underset{}{\\rightleftharpoons}}5-HTP_{gut}`} /></span>
+                                <span className='formula_number'>66</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{gut}}([Trp_{cyto}]-[Trp_{gut}])`} /> </span>
+                                <span className='formula_number'>67</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{cyto}}([Trp_{gut}]-[Trp_{cyto}]) - \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]}`} /></span>
+                                <span className='formula_number'>68</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]} - \\frac{k_{diff\\_5-HTP}}{V_{cyto}}([5\\mathrm{-}HTP_{gut}]-[5\\mathrm{-}HTP_{cyto}])`} /></span>
+                                <span className='formula_number'>69</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_5-HTP}}{V_{gut}}([5\\mathrm{-}HTP_{cyto}]-[5\\mathrm{-}HTP_{gut}])`} /></span>
+                                <span className='formula_number'>70</span>
+                            </div>
+
+                        </MathJax.Provider>
+                        <h3>1.4 Full ODE Model</h3>
+
+                        <MathJax.Provider>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{gut}}([PEA_{peri}]-[PEA_{gut}])`} /></span>
+                                <span className='formula_number'>71</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PEA_{peri}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PEA}}{V_{peri}}([PEA_{gut}]-[PEA_{peri}]) -\\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]}`} /> </span>
+                                <span className='formula_number'>72</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]} + \\frac{k_{diff\\_PA}}{V_{peri}}([PA_{cyto}]-[PA_{peri}])`} /> </span>
+                                <span className='formula_number'>73</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_peri}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TynA}[TynA][PEA_{peri}]}{K_{M\\_TynA}+[PEA_{peri}]} + \\frac{k_{diff\\_NH3}}{V_{peri}}([NH_{3\\_cyto}]-[NH_{3\\_peri}])`} />  </span>
+                                <span className='formula_number'>74</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PA_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PA}}{V_{cyto}}([PA_{peri}]-[PA_{cyto}]) - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}}`} /> </span>
+                                <span className='formula_number'>75</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[NH_{3\\_cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_NH3}}{V_{cyto}}([NH_{3\\_peri}]-[NH_{3\\_cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /></span>
+                                <span className='formula_number'>76</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{cyto}]}{\\mathrm{d}t} = k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] + \\frac{k_{diff\\_PAA}}{V_{cyto}}([PAA_{gut}]-[PAA_{cyto}])`} /> </span>
+                                <span className='formula_number'>77</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[PAA_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_PAA}}{V_{gut}}([PAA_{cyto}]-[PAA_{gut}])`} /></span>
+                                <span className='formula_number'>78</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} /> </span>
+                                <span className='formula_number'>79</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1\\_active}]}{\\mathrm{d}t} = k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] - k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />   </span>
+                                <span className='formula_number'>80</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_GS}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}]`} />  </span>
+                                <span className='formula_number'>81</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[P_{TynA\\_TPH1}]}{\\mathrm{d}t} = -k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} /></span>
+                                <span className='formula_number'>82</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR]}{\\mathrm{d}t} = - \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} + k_{cat\\_FeaR}[FeaR\\mathrm{-}PA]`} />     </span>
+                                <span className='formula_number'>83</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[FeaR\\mathrm{-}PA]}{\\mathrm{d}t} = \\frac{k_{cat\\_FeaR}[FeaR][PA_{cyto}]}{K_{M\\_FeaR}} - k_{cat\\_FeaR}[FeaR\\mathrm{-}PA] -k_{f\\_PtynA}[P_{TynA\\_GS}][FeaR\\mathrm{-}PA] - k_{f\\_PtynA}[P_{TynA\\_TPH1}][FeaR\\mathrm{-}PA] + k_{r\\_PtynA}[P_{TynA\\_GS\\_active}] + k_{r\\_PtynA}[P_{TynA\\_TPH1\\_active}]`} />  </span>
+                                <span className='formula_number'>84</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{GS}]}{\\mathrm{d}t} = k_{mRNA\\_GS}[P_{TynA\\_GS\\_active}] - d_{mRNA\\_GS}[mRNA_{GS}]`} /></span>
+                                <span className='formula_number'>85</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[mRNA_{TPH1}]}{\\mathrm{d}t} = k_{mRNA\\_TPH1}[P_{TynA\\_TPH1\\_active}] - d_{mRNA\\_TPH1}[mRNA_{TPH1}]`} />  </span>
+                                <span className='formula_number'>86</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[GS]}{\\mathrm{d}t} = p_{GS}[mRNA_{GS}] - d_{GS}[GS]`} />  </span>
+                                <span className='formula_number'>87</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[TPH1]}{\\mathrm{d}t} = p_{TPH1}[mRNA_{TPH1}] - d_{TPH1}[TPH1]`} /> </span>
+                                <span className='formula_number'>88</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{gut}}([Glu_{cyto}]-[Glu_{gut}])`} /> </span>
+                                <span className='formula_number'>89</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Glu_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Glu}}{V_{cyto}}([Glu_{gut}]-[Glu_{cyto}]) - \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])}`} /> </span>
+                                <span className='formula_number'>90</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_GS}[GS][Glu_{cyto}][NH_{3\\_cyto}]}{(K_{M\\_GS\\_Glu}+[Glu_{cyto}])(K_{M\\_GS\\_NH3}+[NH_{3\\_cyto}])} + \\frac{k_{diff\\_Gln}}{V_{cyto}}([Gln_{gut}]-[Gln_{cyto}])`} /> </span>
+                                <span className='formula_number'>91</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Gln_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Gln}}{V_{gut}}([Gln_{cyto}]-[Gln_{gut}])`} /></span>
+                                <span className='formula_number'>92</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{gut}}([Trp_{cyto}]-[Trp_{gut}])`} /></span>
+                                <span className='formula_number'>93</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[Trp_{cyto}]}{\\mathrm{d}t} = \\frac{k_{diff\\_Trp}}{V_{cyto}}([Trp_{gut}]-[Trp_{cyto}]) - \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]}`} /></span>
+                                <span className='formula_number'>94</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{cyto}]}{\\mathrm{d}t} = \\frac{k_{cat\\_TPH1}[TPH1][Trp_{cyto}]}{K_{M\\_TPH1}+[Trp_{cyto}]} - \\frac{k_{diff\\_5-HTP}}{V_{cyto}}([5\\mathrm{-}HTP_{gut}]-[5\\mathrm{-}HTP_{cyto}])`} /> </span>
+                                <span className='formula_number'>95</span>
+                            </div>
+                            <div className='indent formula_content'>
+                                <span className='formula_line'>
+                                    <MathJax.Node formula={`\\frac{\\mathrm{d}[5\\mathrm{-}HTP_{gut}]}{\\mathrm{d}t} = \\frac{k_{diff\\_5-HTP}}{V_{gut}}([5\\mathrm{-}HTP_{cyto}]-[5\\mathrm{-}HTP_{gut}])`} /> </span>
+                                <span className='formula_number'>96</span>
+                            </div>
+                        </MathJax.Provider>
+                        <h3>Initial Conditions</h3>
+                        <p>Except for the variables mentioned below, the initial values of all other variables are set to 0.</p>
+                        <table>
+                            <tr>
+                                <td>Variable 变量名</td>
+                                <td>Value 数值</td>
+                                <td>Units 单位</td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[PEA_{gut}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[TynA]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[FeaR]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[P_{TynA\\_GS}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td>$<MathJax.Node inline formula={`[P_{TynA\\_TPH1}]`} />$</td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[Glu_{gut}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[Glu_{cyto}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[Gln_{gut}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[Gln_{cyto}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                            <tr>
+                                <td><MathJax.Node inline formula={`[Trp_{gut}]`} /></td>
+                                <td></td>
+                                <td></td>
+                            </tr>
+                        </table>
+
+                    </Element>
+                    <Element name="section2" className="element" id='section2'>
+                        <h2>PART2 Metabolic Engineering Strategy to Reduce Ammonia Production</h2>
+                        <h3>2.1 Goals</h3>
+                        <p>In Escherichia coli Nissle 1917, various metabolic processes, such as amino acid deamination and urea metabolism, generate ammonia, which may pose potential risks to patients undergoing treatment with engineered bacteria. In our wet lab experiments, we utilized M9 medium to reduce ammonia production; however, it is crucial to decrease the strain's intrinsic ammonia production through methods such as gene knockout for strains intended for therapeutic use.</p>
+                        <p>Our goal is to identify the key genes influencing ammonia production and uptake, and to perform knockouts based on their effects on ammonia metabolism. This approach aims to simulate the overall impact of these modifications on ammonia metabolism in Escherichia coli, thereby providing genetic targets for future production of therapeutic strains. To achieve this objective, we utilized a genome-scale metabolic model (GEM) of Escherichia coli Nissle 1917, a flux balance analysis (FBA) computational framework, and the OptGene gene optimization strategy. The GEM was provided by Hof et al., the FBA computational framework was supplied by COBRApy, and the OptGene algorithm was sourced from the Cameo library.</p>
+                        <h3>2.2 Identification of Ammonia-Related Reactions and Flux</h3>
+                        <p>First, we loaded the genome-scale metabolic model <strong>iDK1463</strong>  for Escherichia coli Nissle 1917, which includes <strong>1,464</strong>  genes,<b>2,112</b> metabolites, and <b>2,984</b> reactions based on genomic annotations and experimental data. Subsequently, we employed the flux balance analysis (FBA) method to calculate the steady-state metabolic fluxes (i.e., reaction rates) for various metabolic reactions in the wild-type strain.</p>
+                        <div className="accordion">
+                            <div className="accordion-header" onClick={toggleAccordion1}>
+                                <h3>{isOpen1 ? 'Collapse' : 'Click here to see the details of FBA method!'} ......</h3>
+                            </div>
+
+                            <div className={`accordion-content-model ${isOpen1 ? 'open' : ''}`}>
+                                <p>FBA is a constraint-based reconstruction and analysis (COBRA) method that requires input data including all reactions involved in the metabolic processes, the upper and lower bounds for the flux of each reaction, and the weights for each reaction in the optimization objective. This framework allows for the systematic evaluation of metabolic network behavior under specified constraints, enabling the identification of optimal flux distributions that align with the chosen objectives.</p>
+                                <p>The basic mathematical model of FBA can be expressed in the following linear programming form</p>
+                                <MathJax.Provider>
+                                    <div className='indent formula_content' >
+                                        <span className='formula_line'><MathJax.Node formula={`\\begin{align*}&\\max  \\quad  \\mathbf{c}^T \\mathbf{v}\\\\&\\begin{array}{r@{\\quad}l@{}l@{\\quad}l}\\text{s.t.}  \\quad & \\mathbf{S} \\mathbf{v} = \\mathbf{0}\\\\&\\mathbf{v}_{\\text{min}} \\leq \\mathbf{v} \\leq \\mathbf{v}_{\\text{max}}\\end{array} \\end{align*}`} /> </span>
+                                        <span className='formula_number'>1</span>
+                                    </div>
+                                </MathJax.Provider>
+                                <p>Where:</p>
+                                <ul><li><MathJax.Provider>
+                                    <MathJax.Node inline formula={`v`} />
+                                </MathJax.Provider> is the <strong>flux vector</strong> , with each value representing the rate of a specific reaction.</li>
+                                    <li><MathJax.Provider>
+                                        <MathJax.Node inline formula={`c`} />
+                                    </MathJax.Provider> is the <strong>coefficient vector</strong>  of the objective function, which includes the weight values for each reaction in the optimization objective. Typically, the goal is to maximize the biomass reaction to promote the fastest growth of the organism, with the weight of the biomass reaction set to 1 and all other reactions set to 0.</li>
+                                    <li><MathJax.Provider>
+                                        <MathJax.Node inline formula={`S`} />
+                                    </MathJax.Provider> is the <strong>stoichiometric matrix</strong> of the metabolic network, where rows represent metabolites and columns represent reactions. The values indicate the stoichiometric coefficients of metabolites in the reactions, with substrates represented as negative and products as positive.</li>
+                                    <li><MathJax.Provider>
+                                        <MathJax.Node inline formula={`v_{min}`} />
+                                    </MathJax.Provider> and <MathJax.Provider>
+                                            <MathJax.Node inline formula={`v_{max}`} />
+                                        </MathJax.Provider> are the <strong>lower and upper bounds</strong>  on the fluxes, respectively.</li>
+                                </ul>
+                                <p>In other words, the goal of FBA is to maximize the flux of the objective reaction (typically the biomass reaction) under the constraints of balanced input-output fluxes and ensuring that the fluxes of each reaction remain within their specified bounds</p>
+                                <p>In COBRApy, the default unit for flux is mmol/(gDW*hr), which represents the millimoles of a substance produced or consumed per gram dry cell weight per hour.</p>
+                            </div>
+                        </div>
+                        <p>To identify knockout targets, we ran FBA optimization on iDK1463, yielding the flux values for various metabolic reactions in the optimized strain. Next, we filtered out the reactions related to ammonia, excluding those with a flux of zero under normal physiological conditions. The biomass reaction and reactions linearly related to it were considered essential and not selected as targets. Ultimately, among the **6 reactions identified**, the flux of ammonia-producing reactions will be minimized, while the flux of ammonia-consuming reactions will be maximized.</p>
+                        <table className="three-line-table">
+                            <thead>
+                                <tr className='table-head-line'>
+                                    <th>ID</th>
+                                    <th>Name</th>
+                                    <th>Formula</th>
+                                    <th>Flux [mmol/(gDW*hr)]</th>
+                                    <th>Strategy</th>
+                                </tr>
+                            </thead>
+                            <tbody>
+                                {table1.map((row) => (
+                                    <tr>
+                                        <td>{row.id}</td>
+                                        <td>{row.col1}</td>
+                                        <td> <MathJax.Provider>
+                                            <MathJax.Node inline formula={row.col2} />
+                                        </MathJax.Provider>   </td>
+                                        <td>{row.col3}</td>
+                                        <td>{row.col4}</td>
+                                    </tr>
+                                ))}
+                            </tbody>
+                        </table>
+
+
+                        <h3>2.3 Target Gene Search Based on Evolutionary Algorithms</h3>
+                        <p>After identifying the ammonia-related reactions, the next objective is to search for target genes that can reduce ammonia production while increasing its consumption. For this purpose, we employed the OptGene algorithm proposed by Patil et al.
+                        </p>
+                        <div className="accordion">
+                            <div className="accordion-header" onClick={toggleAccordion2}>
+                                <h3>{isOpen2 ? 'Collapse' : 'Click here to see the details of OptGene algorithm!'} ......</h3>
+                            </div>
+
+                            <div className={`accordion-content-model ${isOpen2 ? 'open' : ''}`}>
+                                <p>OptGene is a target gene search algorithm based on genetic algorithms (GA), which utilize the principles of Darwinian evolution to search for global optimal solutions. The basic workflow is outlined as follows:</p>
+                                <ol><li><b>Population Initialization</b> : A specified number of solutions are randomly generated, where each solution is represented as a one-hot encoded gene "switch" vector. In this vector, a gene marked as "on" has a value of 1, indicating normal expression, while a gene marked as "off" has a value of 0, indicating that the gene is knocked out. Each solution is referred to as an individual.</li>
+                                    <li><b>Fitness Calculation</b> : The fitness (objective function value) of each individual is calculated, taking into account three factors: the biomass should be maximized, ammonia production should be minimized (or ammonia consumption should be maximized), and the number of genes knocked out should be minimized. Biomass, ammonia production, and ammonia consumption will be computed using the FBA method.</li>
+                                    <li><b>Termination Check</b>: Verify if the termination criteria are met. If they are, return the results; if not, proceed to the next step.</li>
+                                    <li><b>Adjustment of Individuals</b>: Each individual undergoes adjustment, which includes crossover and mutation. Crossover, akin to chromosomal crossover, involves exchanging segments of data between two individuals. Mutation entails modifying a specific point in an individual's data (e.g., marking a gene as "off"). Individuals with higher fitness scores have a greater probability of being adjusted.</li>
+                                    <li><b>Return to Step 2</b>: Repeat the fitness calculation and subsequent steps.</li></ol>
+                                <p>For genes marked as "off", these genes are considered inactive, and the upper and lower bounds for the corresponding reactions are both set to 0, effectively achieving the knockout of that gene.</p>
+                                <p>The process of the algorithm and the representation method of query phenotype are shown in the following two figures:</p>
+                                <div>
+                                    < img src='https://static.igem.wiki/teams/5378/model/model1.webp' className='responsive-img' />
+                                    <figcaption className='caption'>Figure 1:  Schematic overview of the OptGene algorithm</figcaption>
+
+                                    < img src='https://static.igem.wiki/teams/5378/model/model2.webp' className='responsive-img' />
+                                    <figcaption className='caption'>Figure 2: Representation of the metabolic genotype</figcaption>
+                                </div>
+                            </div>
+                        </div>
+                        <p>Based on the OptiGene algorithm, we identified two valuable target reactions: <b>Glycine Cleavage System (GLYCL)</b> and <b>Glutamate Dehydrogenase (NADP, GLUDy)</b>. The main reactions involved, the candidate knockout targets, and the effects of their knockout on flux are summarized in the table below:</p>
+                        <table className="three-line-table">
+                            <thead>
+                                <tr className='table-head-line'>
+                                    <th>Target Reaction</th>
+                                    <th>Related Reactions</th>
+                                    <th>Genes</th>
+                                    <th>Target Flux [mmol/(gDW*hr)]</th>
+                                    <th>Biomass Flux [mmol/(gDW*hr)]</th>
+                                </tr>
+                            </thead>
+                            <tbody>
+                                {table2.map((row) => (
+                                    <tr>
+                                        <td>{row.id}</td>
+                                        <td>{row.col1}</td>
+                                        <td>{row.col2}</td>
+                                        <td>{row.col3}</td>
+                                        <td>{row.col4}</td>
+                                    </tr>
+                                ))}
+                            </tbody>
+                        </table>
+
+                        <p>Subsequently, we evaluated the potential impact of <b>15 candidate genes</b> resulting in <b>32,767 knockout combinations</b> on the growth and ammonia production of the strain using FBA. The results indicated that enhancing the reverse reaction of GLUDy is a key factor in reducing ammonia production, while the knockout of the <b>ECOLIN_RS15500</b> gene (corresponding to the ENO reaction) is a crucial step toward achieving this goal. Although the knockout of the GLYCL reaction can also reduce ammonia production to a small extent, it is not a primary factor. Additionally, different knockout schemes significantly affect the strain's growth, specifically the biomass flux.</p>
+                        <p>Considering that excessive knockouts may impair the strain's normal physiological functions and increase operational complexity, we ultimately identified <b>6 alternative knockout schemes</b> that balance ammonia production and biomass:</p>
+                        <table className="three-line-table">
+                            <thead>
+                                <tr className='table-head-line'>
+                                    <th>Target Genes for Knockout</th>
+                                    <th>Biomass Flux [mmol/(gDW*hr)]</th>
+                                    <th>Ammonia Production per Biomass [mmol/(gDW*hr)]</th>
+                                    <th>Biomass Ratio Compared to WT (%)</th>
+                                    <th>Ammonia Production Ratio Compared to WT (%)</th>
+                                </tr>
+                            </thead>
+                            <tbody>
+                                {table3.map((row) => (
+                                    <tr>
+                                        <td>{row.id}</td>
+                                        <td>{row.col1}</td>
+                                        <td>{row.col2}</td>
+                                        <td>{row.col3}</td>
+                                        <td>{row.col4}</td>
+                                    </tr>
+                                ))}
+                            </tbody>
+                        </table>
+                        <p>The table displays the biomass flux and ammonia production per unit biomass for the wild-type strain and various knockout strains, along with the percentage of these values compared to the wild-type strain.</p>
+                        <p>In summary, our metabolic engineering analysis provided multiple knockout schemes, including single and multi-gene knockouts. Through gene knockout, ammonia production can be reduced to approximately <b>18% </b>of the wild-type levels, while the growth rate of the strain can be maintained at about <b>80%</b> of the wild-type. This finding offers significant directions for genetic modifications in the development of engineered strains intended for in vivo therapy.</p>
+                    </Element>
+
+
+                    <Element name="section3" className="element " id='section3'>
+                    </Element>
+
+
                 </div>
 
-                <div className="accordion">
-
-      <div className="accordion-header" onClick={toggleAccordion}>
-        <h3>{isOpen ? 'Collapse' : 'Learn more about'} ......</h3>
-      </div>
-      <div className={`accordion-content ${isOpen ? 'open' : ''}`}>
-        <p>Lorem ipsum dolor sit amet consectetur adipisicing elit. Numquam possimus consequatur nesciunt iure labore voluptatem! Unde, voluptates ipsam et soluta minima hic, aliquid, nam doloribus illo quas odit ducimus? Vero?Lorem ipsum dolor, sit amet consectetur adipisicing elit. Rem laudantium asperiores tempore quisquam repellendus deleniti corporis ratione dolores eligendi, atque impedit esse dolore eum sequi harum cum cumque quae necessitatibus!longerlore!</p>
-      </div>
-
-    </div>
-              
-              <Element name="section2" className="element" id='section2'>
-                <h2>Section 2</h2>
-                <p>Content for section 2.</p>
-                <MathJax.Provider>
-                  <div className='indent'>
-                      {/* 行内编辑数学公式,相比于下面那个方便一些。去掉inline的话效果就和下面那个一样了。 */}
-                      This is an inline math formula: <MathJax.Node inline formula={`f(x) = \\int_{-\\infty}^\\infty
-                                                                                    \\hat f(\\xi)\\,e^{2 \\pi i \\xi x}
-                                                                                    \\,d\\xi`} />
-                                                                                    <MathJax.Node formula={`f(x) = \\int_{-\\infty}^\\infty
-                                                                                    \\hat f(\\xi)\\,e^{2 \\pi i \\xi x}
-                                                                                    \\,d\\xi`} />
-                  </div>
-              </MathJax.Provider>
-                <img 
-                src="https://static.igem.wiki/teams/5378/school-badge/yanyintech.webp"
-                alt="example"
-                className="responsive-img"
-              />
-              </Element>
-          
-
-              <Element name="section3" className="element " id='section3'>
-              <h2>Section 3</h2>
-              <p>Content for section 3.</p>
-              <div className="">
-              <h4 className="center-text">Section 3</h4>
-              <p className="indent">las ijffs aiskfd fskj iiwls asd.aass ffas awssd awus iisal fask.aisisad ksjdfkaf iwjasifjakdshf wijdfalksjf wiksjkfjksalhf, gsahfjhgejkfh  uhaejkfh sjdihgfuqiw jh sjiafhjsaj fh asd.</p>
-              <p className="indent">las ijffs aiskfd fskj iiwls asd.aass ffas awssd awus iisal fask.aisisad ksjdfkaf iwjasifjakdshf wijdfalksjf wiksjkfjksalhf, gsahfjhgejkfh  uhaejkfh sjdihgfuqiw jh sjiafhjsaj fh asd.</p>
-
-              <MathJax.Provider>
-                  <div className='indent'>
-                      {/* 行内编辑数学公式,相比于下面那个方便一些。去掉inline的话效果就和下面那个一样了。 */}
-                      This is an inline math formula: <MathJax.Node inline formula={`f(x) = \\int_{-\\infty}^\\infty
-                                                                                    \\hat f(\\xi)\\,e^{2 \\pi i \\xi x}
-                                                                                    \\,d\\xi`} />
-                  </div>
-              </MathJax.Provider>
-              </div>
-
-              </Element>
-          
 
-        </div>
-        
 
-          
-        
-      </div>
-    </>
-  );
+
+            </div>
+        </>
+    );
 }
diff --git a/src/pages copy.ts b/src/pages copy.ts
deleted file mode 100644
index 0e42f58b5d7e4a5bbb7860c2c8324b849ffb1404..0000000000000000000000000000000000000000
--- a/src/pages copy.ts	
+++ /dev/null
@@ -1,170 +0,0 @@
-import {
-  Attributions,
-  Contribution,
-  Description,
-  Engineering,
-  Experiments,
-  Home,
-  HumanPractices,
-  Notebook,
-  Results,
-  Safety,
-  Team,
-  Education,
-  Entrepreneurship,
-  Inclusivity,
-  Model,
-  collaboration,
-} from "./contents";
-
-interface Base {
-  name: string | undefined;
-}
-
-class Folder implements Base {
-  name: string | undefined;
-  folder: Page[] | undefined;
-}
-
-class Page implements Base {
-  name: string | undefined;
-  title: string | undefined;
-  path: string | undefined;
-  component: React.FC | undefined;
-  lead: string | undefined;
-}
-
-const Pages: (Page | Folder)[] = [
-  {
-    name: "Home",
-    title: "Liver Guardian",
-    path: "/",
-    component: Home,
-    lead: "Welcome to iGEM 2024! Your team has been approved and you are ready to start the iGEM season!",
-  },
-  {
-    name: "Team",
-    folder: [
-      {
-        name: "Team",
-        title: "Team",
-        path: "/team",
-        component: Team,
-        lead: "On this page you can introduce your team members, instructors, and advisors.",
-      },
-      {
-        name: "Attributions",
-        title: "Attributions",
-        path: "/attributions",
-        component: Attributions,
-        lead: "In the iGEM Competition, we celebrate student effort and achievement. The Attributions form helps the judges differentiate between what students accomplished from how their external collaborators supported them. Therefore, teams must clearly explain on the standard Project Attributions form what work they have conducted by themselves and what has been done by others.",
-      },
-    ],
-  },
-  {
-    name: "Project",
-    folder: [
-      {
-        name: "Contribution",
-        title: "Contribution",
-        path: "/contribution",
-        component: Contribution,
-        lead: "Make a useful contribution for future iGEM teams. Use this page to document that contribution.",
-      },
-      {
-        name: "Description",
-        title: "Project Description",
-        path: "/description",
-        component: Description,
-        lead: "Describe how and why you chose your iGEM project.",
-      },
-      {
-        name: "Engineering",
-        title: "Engineering Success",
-        path: "/engineering",
-        component: Engineering,
-        lead: "Demonstrate engineering success in a technical aspect of your project by going through at least one iteration of the engineering design cycle. This achievement should be distinct from your Contribution for Bronze.",
-      },
-      {
-        name: "Experiments",
-        title: "Experiments",
-        path: "/experiments",
-        component: Experiments,
-        lead: "Describe the research, experiments, and protocols you used in your iGEM project.",
-      },
-      {
-        name: "Notebook",
-        title: "Notebook",
-        path: "/notebook",
-        component: Notebook,
-        lead: "Document the dates you worked on your project. This should be a detailed account of the work done each day for your project.",
-      },
-      {
-        name: "Results",
-        title: "Results",
-        path: "/results",
-        component: Results,
-        lead: "You can describe the results of your project and your future plans here.",
-      },
-    ],
-  },
-  {
-    name: "Safety",
-    title: "Safety",
-    path: "/safety",
-    component: Safety,
-    lead: "Describe all the safety issues of your project.",
-  },
-  {
-    name: "Human Practices",
-    title: "Human Practices",
-    path: "/human-practices",
-    component: HumanPractices,
-    lead: "We ask every team to think deeply and creatively about whether their project is responsible and good for the world. Consider how the world affects your work and how your work affects the world.",
-  },
-  {
-    name: "Awards",
-    folder: [
-      {
-        name: "Education",
-        title: "Education",
-        path: "/education",
-        component: Education,
-        lead: "Innovative educational tools and outreach activities have the ability to establish a two-way dialogue with new communities by discussing public values and the science behind synthetic biology.",
-      },
-      {
-        name: "Entrepreneurship",
-        title: "Entrepreneurship",
-        path: "/entrepreneurship",
-        component: Entrepreneurship,
-        lead: "The entrepreneurship prize recognizes exceptional effort to build a business case and commercialize an iGEM project.",
-      },
-      
-      {
-        name: "Inclusivity",
-        title: "Diversity and Inclusion",
-        path: "/inclusivity",
-        component: Inclusivity,
-        lead: "Every individual, regardless of background or experience, should have an equal opportunity to engage with scientific knowledge and technological development.",
-      },
-      
-      {
-        name: "Model",
-        title: "Model",
-        path: "/model",
-        component: Model,
-        lead: "Explain your model's assumptions, data, parameters, and results in a way that anyone could understand.",
-      },
-
-      {
-        name: "Collaboration",
-        title: "Collaboration",
-        path: "/collaboration",
-        component: collaboration,
-        lead: "Collaboration.",
-      },
-    ],
-  },
-];
-
-export default Pages;
diff --git a/src/pages.ts b/src/pages.ts
index 4b4e95ed6dd0f6f9985ed12752e03e36b433a63d..4e21fc9e85289131b548db26be7b2e6f763451d1 100644
--- a/src/pages.ts
+++ b/src/pages.ts
@@ -1,199 +1,195 @@
-import {
-  Attributions,
-  Contribution,
-  Description,
-  Engineering,
-  Experiments,
-  Home,
-  HumanPractices,
-  Notebook,
-  Results,
-  Safety,
-  Team,
-  Education,
-  Entrepreneurship,
-  Inclusivity,
-  Model,
-  collaboration,
-  parts,
-} from "./contents";
-import { FaHome, FaUsers, FaProjectDiagram, FaShieldAlt, FaHandsHelping, FaAward, FaBook, FaFlask, FaLightbulb, FaBusinessTime, FaUniversalAccess, FaCogs, FaHandshake } from "react-icons/fa"; // 引入图标
-
-interface Base {
-  name: string | undefined;
-  icon?: React.ComponentType; // 添加 icon 属性
-}
-
-class Folder implements Base {
-  name: string | undefined;
-  folder: Page[] | undefined;
-  icon?: React.ComponentType;
-}
-
-class Page implements Base {
-  name: string | undefined;
-  title: string | undefined;
-  path: string | undefined;
-  component: React.FC | undefined;
-  lead: string | undefined;
-  icon?: React.ComponentType;
-}
-
-const Pages: (Page | Folder)[] = [
-  {
-    name: "Home",
-    title: "Liver-Brain Guardian",
-    path: "/",
-    component: Home,
-    lead: "Welcome to iGEM 2024! Your team has been approved and you are ready to start the iGEM season!",
-    icon: FaHome,
-  },
-  {
-    name: "Team",
-    folder: [
-      {
-        name: "Team",
-        title: "Team",
-        path: "/team",
-        component: Team,
-        lead: "On this page you can introduce your team members, instructors, and advisors.",
-        icon: FaUsers,
-      },
-      {
-        name: "Attributions",
-        title: "Attributions",
-        path: "/attributions",
-        component: Attributions,
-        lead: "In the iGEM Competition, we celebrate student effort and achievement. The Attributions form helps the judges differentiate between what students accomplished from how their external collaborators supported them. Therefore, teams must clearly explain on the standard Project Attributions form what work they have conducted by themselves and what has been done by others.",
-        icon: FaUsers,
-      },
-    ],
-    icon: FaUsers,
-  },
-  {
-    name: "Project",
-    folder: [
-      {
-        name: "Contribution",
-        title: "Contribution",
-        path: "/contribution",
-        component: Contribution,
-        lead: "Make a useful contribution for future iGEM teams. Use this page to document that contribution.",
-        icon: FaProjectDiagram,
-      },
-      {
-        name: "Description",
-        title: "Project Description",
-        path: "/description",
-        component: Description,
-        lead: "Describe how and why you chose your iGEM project.",
-        icon: FaProjectDiagram,
-      },
-      {
-        name: "Engineering",
-        title: "Engineering Success",
-        path: "/engineering",
-        component: Engineering,
-        lead: "Demonstrate engineering success in a technical aspect of your project by going through at least one iteration of the engineering design cycle. This achievement should be distinct from your Contribution for Bronze.",
-        icon: FaCogs,
-      },
-      {
-        name: "Experiments",
-        title: "Experiments",
-        path: "/experiments",
-        component: Experiments,
-        lead: "Describe the research, experiments, and protocols you used in your iGEM project.",
-        icon: FaFlask,
-      },
-      {
-        name: "Notebook",
-        title: "Notebook",
-        path: "/notebook",
-        component: Notebook,
-        lead: "Document the dates you worked on your project. This should be a detailed account of the work done each day for your project.",
-        icon: FaBook,
-      },
-      {
-        name: "Results",
-        title: "Results",
-        path: "/results",
-        component: Results,
-        lead: "You can describe the results of your project and your future plans here.",
-        icon: FaFlask,
-      },
-      {
-        name: "Parts",
-        title: "Parts",
-        path: "/parts",
-        component: parts,
-        lead: "You can describe the results of your project and your future plans here.",
-        icon: FaFlask,
-      },
-    ],
-    icon: FaProjectDiagram,
-  },
-  {
-    name: "Safety",
-    title: "Safety",
-    path: "/safety",
-    component: Safety,
-    lead: "Describe all the safety issues of your project.",
-    icon: FaShieldAlt,
-  },
-  {
-    name: "Human Practices",
-    title: "Human Practices",
-    path: "/human-practices",
-    component: HumanPractices,
-    lead: "We ask every team to think deeply and creatively about whether their project is responsible and good for the world. Consider how the world affects your work and how your work affects the world.",
-    icon: FaHandsHelping,
-  },
-  {
-    name: "Awards",
-    folder: [
-      {
-        name: "Education",
-        title: "Education",
-        path: "/education",
-        component: Education,
-        lead: "Innovative educational tools and outreach activities have the ability to establish a two-way dialogue with new communities by discussing public values and the science behind synthetic biology.",
-        icon: FaLightbulb,
-      },
-      {
-        name: "Entrepreneurship",
-        title: "Entrepreneurship",
-        path: "/entrepreneurship",
-        component: Entrepreneurship,
-        lead: "The entrepreneurship prize recognizes exceptional effort to build a business case and commercialize an iGEM project.",
-        icon: FaBusinessTime,
-      },
-      {
-        name: "Inclusivity",
-        title: "Diversity and Inclusion",
-        path: "/inclusivity",
-        component: Inclusivity,
-        lead: "Every individual, regardless of background or experience, should have an equal opportunity to engage with scientific knowledge and technological development.",
-        icon: FaUniversalAccess,
-      },
-      {
-        name: "Model",
-        title: "Model",
-        path: "/model",
-        component: Model,
-        lead: "Explain your model's assumptions, data, parameters, and results in a way that anyone could understand.",
-        icon: FaCogs,
-      },
-      {
-        name: "Collaboration",
-        title: "Collaboration",
-        path: "/collaboration",
-        component: collaboration,
-        lead: "Collaboration.",
-        icon: FaHandshake,
-      },
-    ],
-    icon: FaAward,
-  },
-];
-
+// 导航顺序
+
+import {
+  Attributions,
+  Contribution,
+  Description,
+  Engineering,
+  Experiments,
+  Home,
+  HumanPractices,
+
+  Results,
+  Safety,
+  Team,
+  Education,
+  Entrepreneurship,
+  Inclusivity,
+  Model,
+  collaboration,
+  parts,
+} from "./contents";
+import { FaHome, FaUsers, FaProjectDiagram, FaShieldAlt, FaHandsHelping, FaAward,  FaFlask, FaLightbulb, FaBusinessTime, FaUniversalAccess, FaCogs, FaHandshake } from "react-icons/fa"; // 引入图标
+
+interface Base {
+  name: string | undefined;
+  icon?: React.ComponentType; // 添加 icon 属性
+}
+
+class Folder implements Base {
+  name: string | undefined;
+  folder: Page[] | undefined;
+  icon?: React.ComponentType;
+}
+
+class Page implements Base {
+  name: string | undefined;
+  title: string | undefined;
+  path: string | undefined;
+  component: React.FC | undefined;
+  lead: string | undefined;
+  icon?: React.ComponentType;
+}
+
+const Pages: (Page | Folder)[] = [
+  {
+    name: "Home",
+    title: "Liver-Brain Guardian",
+    path: "/",
+    component: Home,
+    lead: "Welcome to iGEM 2024! Your team has been approved and you are ready to start the iGEM season!",
+    icon: FaHome,
+  },
+  {
+    name: "Team",
+    folder: [
+      {
+        name: "Team",
+        title: "Team",
+        path: "/team",
+        component: Team,
+        lead: "On this page you can introduce your team members, instructors, and advisors.",
+        icon: FaUsers,
+      },
+      {
+        name: "Attributions",
+        title: "Attributions",
+        path: "/attributions",
+        component: Attributions,
+        lead: "In the iGEM Competition, we celebrate student effort and achievement. The Attributions form helps the judges differentiate between what students accomplished from how their external collaborators supported them. Therefore, teams must clearly explain on the standard Project Attributions form what work they have conducted by themselves and what has been done by others.",
+        icon: FaUsers,
+      },
+    ],
+    icon: FaUsers,
+  },
+  {
+    name: "Project",
+    folder: [
+      {
+        name: "Contribution",
+        title: "Contribution",
+        path: "/contribution",
+        component: Contribution,
+        lead: "Make a useful contribution for future iGEM teams. Use this page to document that contribution.",
+        icon: FaProjectDiagram,
+      },
+      {
+        name: "Description",
+        title: "Project Description",
+        path: "/description",
+        component: Description,
+        lead: "Describe how and why you chose your iGEM project.",
+        icon: FaProjectDiagram,
+      },
+      {
+        name: "Engineering",
+        title: "Engineering Success",
+        path: "/engineering",
+        component: Engineering,
+        lead: "Demonstrate engineering success in a technical aspect of your project by going through at least one iteration of the engineering design cycle. This achievement should be distinct from your Contribution for Bronze.",
+        icon: FaCogs,
+      },
+      {
+        name: "Experiments",
+        title: "Experiments",
+        path: "/experiments",
+        component: Experiments,
+        lead: "Describe the research, experiments, and protocols you used in your iGEM project.",
+        icon: FaFlask,
+      },
+      {
+        name: "Model",
+        title: "Model",
+        path: "/model",
+        component: Model,
+        lead: "Explain your model's assumptions, data, parameters, and results in a way that anyone could understand.",
+        icon: FaCogs,
+      },
+
+      {
+        name: "Results",
+        title: "Results",
+        path: "/results",
+        component: Results,
+        lead: "You can describe the results of your project and your future plans here.",
+        icon: FaFlask,
+      },
+      {
+        name: "Parts",
+        title: "Parts",
+        path: "/parts",
+        component: parts,
+        lead: "You can describe the results of your project and your future plans here.",
+        icon: FaFlask,
+      },
+    ],
+    icon: FaProjectDiagram,
+  },
+  {
+    name: "Safety",
+    title: "Safety",
+    path: "/safety",
+    component: Safety,
+    lead: "Describe all the safety issues of your project.",
+    icon: FaShieldAlt,
+  },
+  {
+    name: "Human Practices",
+    title: "Human Practices",
+    path: "/human-practices",
+    component: HumanPractices,
+    lead: "We ask every team to think deeply and creatively about whether their project is responsible and good for the world. Consider how the world affects your work and how your work affects the world.",
+    icon: FaHandsHelping,
+  },
+  {
+    name: "Awards",
+    folder: [
+      {
+        name: "Education",
+        title: "Education",
+        path: "/education",
+        component: Education,
+        lead: "Innovative educational tools and outreach activities have the ability to establish a two-way dialogue with new communities by discussing public values and the science behind synthetic biology.",
+        icon: FaLightbulb,
+      },
+      {
+        name: "Entrepreneurship",
+        title: "Entrepreneurship",
+        path: "/entrepreneurship",
+        component: Entrepreneurship,
+        lead: "The entrepreneurship prize recognizes exceptional effort to build a business case and commercialize an iGEM project.",
+        icon: FaBusinessTime,
+      },
+      {
+        name: "Inclusivity",
+        title: "Diversity and Inclusion",
+        path: "/inclusivity",
+        component: Inclusivity,
+        lead: "Every individual, regardless of background or experience, should have an equal opportunity to engage with scientific knowledge and technological development.",
+        icon: FaUniversalAccess,
+      },
+   
+      {
+        name: "Collaboration",
+        title: "Collaboration",
+        path: "/collaboration",
+        component: collaboration,
+        lead: "Collaboration.",
+        icon: FaHandshake,
+      },
+    ],
+    icon: FaAward,
+  },
+];
+
 export default Pages;
\ No newline at end of file