From c99c330d5f6d4ebe66afd8d052033161f0e187ee Mon Sep 17 00:00:00 2001 From: Isabell Guckes <isabell.guckes@uni-bielefeld.de> Date: Sun, 29 Sep 2024 20:53:13 +0200 Subject: [PATCH] edit del --- src/contents/description.tsx | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/src/contents/description.tsx b/src/contents/description.tsx index a2e9d29a..67dbddc7 100644 --- a/src/contents/description.tsx +++ b/src/contents/description.tsx @@ -185,7 +185,9 @@ export function Description() { <img src="https://static.igem.wiki/teams/5247/delivery/sort-lnp-ohne-beschriftung.webp"/> </div> <div className='col'> - <p>We optimized lipid nanoparticles (LNPs) as a robust delivery system to transport larger therapeutic cargo, such as Prime Editing mRNA, to lung epithelial cells via inhalation. LNPs were chosen over other delivery systems, like Adeno-associated viruses (AAVs), due to their superior cargo capacity and reduced immunogenicity. Our goal was to create a spray-dried lung-specific LNP named AirBuddy, capable of efficiently delivering of our Prime Editing components, referred to as PrimeGuide, to lung tissues through inhalation. This approach is designed to advance precision medicine by ensuring targeted delivery with minimal off-target effects.</p> + <p>We optimized lipid nanoparticles (LNPs) as a robust delivery system to transport larger therapeutic cargo, such as Prime Editing mRNA, to lung epithelial cells via inhalation. LNPs were chosen over other delivery systems, like Adeno-associated viruses (AAVs), due to their superior cargo capacity and reduced immunogenicity. Our goal was to create a spray-dried lung-specific LNP named</p> + <img src="https://static.igem.wiki/teams/5247/delivery/airbuddy.webp" style={{maxHeight: "80pt"}}/> + <p>capable of efficiently delivering of our Prime Editing components, referred to as PrimeGuide, to lung tissues through inhalation. This approach is designed to advance precision medicine by ensuring targeted delivery with minimal off-target effects.</p> </div> </div> <Collapsible id="Col1" open={false} title="LNPs explained"> @@ -221,10 +223,11 @@ export function Description() { <LoremShort/> </Collapsible> <br/> - <p>To optimize AirBuddy for pulmonary delivery, we collaborated extensively with several experts, including <a onClick={() => goToPagesAndOpenTab('weber', '/human-practices')}>Prof. Weber, Dr. Große-Onnebrink</a> and <a onClick={() => goToPagesAndOpenTab('tabid', '/human-practices')}>Dr. Kolonko</a> as medical experts, <a onClick={() => goToPagesAndOpenTab('kristian', '/human-practices')}>Prof. Dr. Müller</a>, <a onClick={() => goToPagesAndOpenTab('radukic', '/human-practices')}>Dr. Radukic</a>, Benjamin Moorlach and the Physical and Biophysical Chemistry working group as academic experts form Bielefeld University and FH Bielefeld as well as <a onClick={() => goToPagesAndOpenTab('corden', '/human-practices')}>Corden Pharma</a> and <a onClick={() => goToPagesAndOpenTab('rnhale', '/human-practices')}>RNhale</a> as industrial experts. Throughout the <a onClick={() => goToPagesAndOpenTab('delivery head', '/engineering')}>development process</a>, we tested two commercially available kits: the <strong>Cayman Chemical LNP Exploration Kit (LNP-102)</strong> and the <strong>Corden Pharma LNP Starter Kit #2</strong>. While the Cayman kit demonstrated limited transfection efficiency, the Corden Pharma formulation significantly enhanced cellular uptake in lung tissues. Building on this, we integrated the <strong>SORT LNP</strong> method based on Wang's research [1], making our nanoparticles lung-specific. Additionally, we employed a <strong>spray-drying technique</strong> by RNhale [2] to improve the stability of our LNP, ensuring that it withstands the inhalation process without degradation and by that, <strong>AirBuddy</strong> was born. </p> - <img src="https://static.igem.wiki/teams/5247/delivery/airbuddy.webp"></img> - <p>The SORT LNPs are especially suited for pulmonary delivery due to their capacity for precise organ targeting. Their structural stability is maintained during the delivery process, and the spray-drying approach significantly enhances their resilience, allowing the LNPs to remain intact throughout inhalation. This stability is crucial for the efficient delivery of mRNA into lung epithelial cells, where PrimeGuide can effectively perform genome editing. To evaluate the delivery efficiency, we transfected HEK293 cells using fluorescent cargo and quantified the results through FACS analysis.</p> - <p>To ensure that AirBuddy meets the necessary standards for safety and efficacy, we conducted extensive <a onClick={() => goToPageAndScroll ('In-Depth Characterization of LNPsH', '/materials-methods')}> characterization of the LNPs </a> characterization of the LNPs using techniques such as Zeta potential analysis, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Cryogenic Electron Microscopy (cryo-EM). These methods confirmed the uniformity, stability, and optimal size distribution of the nanoparticles. Furthermore, <strong>cytotoxicity assessments</strong>, including MTT and proliferation assays, demonstrated that our LNPs are biocompatible and do not impede cell growth or function by the incorporation of <a onClick={() => goToPagesAndOpenTab('it4', '/engineering')}>PEG</a> and other ambivalent components. These findings reinforce AirBuddy's potential as a safe and effective tool for pulmonary delivery, with broad implications for gene therapies targeting lung diseases.</p> + <div className='row align-items-center'> + <p>To optimize AirBuddy for pulmonary delivery, we collaborated extensively with several experts, including <a onClick={() => goToPagesAndOpenTab('weber', '/human-practices')}>Prof. Weber, Dr. Große-Onnebrink</a> and <a onClick={() => goToPagesAndOpenTab('tabid', '/human-practices')}>Dr. Kolonko</a> as medical experts, <a onClick={() => goToPagesAndOpenTab('kristian', '/human-practices')}>Prof. Dr. Müller</a>, <a onClick={() => goToPagesAndOpenTab('radukic', '/human-practices')}>Dr. Radukic</a>, Benjamin Moorlach and the Physical and Biophysical Chemistry working group as academic experts form Bielefeld University and FH Bielefeld as well as <a onClick={() => goToPagesAndOpenTab('corden', '/human-practices')}>Corden Pharma</a> and <a onClick={() => goToPagesAndOpenTab('rnhale', '/human-practices')}>RNhale</a> as industrial experts. Throughout the <a onClick={() => goToPagesAndOpenTab('delivery head', '/engineering')}>development process</a>, we tested two commercially available kits: the <strong>Cayman Chemical LNP Exploration Kit (LNP-102)</strong> and the <strong>Corden Pharma LNP Starter Kit #2</strong>. While the Cayman kit demonstrated limited transfection efficiency, the Corden Pharma formulation significantly enhanced cellular uptake in lung tissues. Building on this, we integrated the <strong>SORT LNP</strong> method based on Wang's research [1], making our nanoparticles lung-specific. Additionally, we employed the <strong>spray-drying technique</strong> in cooperation with RNhale [2] to improve the stability of our LNP, ensuring that it withstands the inhalation process without degradation. This stability is crucial for the efficient delivery of mRNA into lung epithelial cells, where PrimeGuide can effectively perform genome editing.</p> + <img src="https://static.igem.wiki/teams/5247/delivery/big-plan-inhalation-teil-del.webp"/> + </div> + <p>To evaluate the <strong>delivery efficiency</strong>, we transfected HEK293 cells using fluorescent cargo and quantified the results through FACS analysis. We also ensured that AirBuddy meets the necessary standards for safety and efficacy since we conducted extensive <a onClick={() => goToPageAndScroll ('In-Depth Characterization of LNPsH', '/materials-methods')}> characterization of the LNPs </a>using techniques such as Zeta potential analysis, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Cryogenic Electron Microscopy (cryo-EM). These methods confirmed the uniformity, stability, and optimal size distribution of the nanoparticles. Furthermore, <strong>cytotoxicity assessments</strong> including MTT and proliferation assays demonstrated that our LNPs are biocompatible and do not impede cell growth or function by the incorporation of <a onClick={() => goToPagesAndOpenTab('it4', '/engineering')}>PEG</a> and other ambivalent components. These findings reinforce AirBuddy's potential as a safe and effective tool for pulmonary delivery, with broad implications for gene therapies targeting lung diseases.</p> </Subesction> </Section> <Section title="Our Vision" id="Our Vision"> -- GitLab