diff --git a/wiki/pages/description.html b/wiki/pages/description.html index 8dbaedfbd62ef86a629eddbb3531959b82c88999..312c72524c29900a9bf05b1871d598b7fa3dba9c 100644 --- a/wiki/pages/description.html +++ b/wiki/pages/description.html @@ -504,28 +504,49 @@ <div id="table-re" class="table-wrapper hide"> <div class="table-fo" id="reference"> <p> - 1. Andrady, A.L. and M.A. Neal, Applications and societal benefits - of plastics. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1526): - p. 1977-84. + 1. Roland Geyer et al. ,Production, use, and fate of all plastics ever made.Sci. Adv.3,e1700782(2017). </p> <p> - 2. McAdam, B., et al., Production of Polyhydroxybutyrate (PHB) and - Factors Impacting Its Chemical and Mechanical Characteristics. - Polymers (Basel), 2020. 12(12). + 2.Lett Z, Hall A, Skidmore S, Alves NJ. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. Environ Pollut. 2021;291:118190. </p> <p> - 3. Gu, F., et al., Quorum Sensing-Based Dual-Function Switch and - Its Application in Solving Two Key Metabolic Engineering Problems. - ACS Synth Biol, 2020. 9(2): p. 209-217. + 3.Arthur C, Baker J, Bamford H, eds. 2009. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Tech. Memo. NOS-OR&R-30. Washington, DC: Natl. Ocean. Atmos. Adm. </p> <p> - 4. Gao, Y., et al., Inducible cell lysis systems in microbial - production of bio-based chemicals. Appl Microbiol Biotechnol, - 2013. 97(16): p. 7121-9. + 4.F. Gironi & V. Piemonte piemonte@ingchim.ing.uniroma1.it (2011) Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33:21, 1949-1959. </p> <p> - 5. Rajaure, M., et al., Membrane fusion during phage lysis. Proc - Natl Acad Sci U S A, 2015. 112(17): p. 5497-502. + 5.I. Levett, G. Birkett, N. Davies, A. Bell, A. Langford, B. Laycock, P. Lant, S. Pratt Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane - the case for thermophilic bioprocessing J. Environ. Chem. Eng., 4 (2016), pp. 3724-3733. + </p> + <p> + 6.Gurieff N, Lant P. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour Technol. 2007;98(17):3393-3403. doi:10.1016/j.biortech.2006.10.046. + </p> + <p> + 7.H.F. Listewnik, K.D. Wendlandt, M. Jechorek, G. Mirschel Process design for the microbial synthesis of poly-β-hydroxybutyrate (PHB) from natural gas Eng. Life Sci., 7 (2007), pp. 278-282. + </p> + <p> + 8.Gu, F., et al., Quorum Sensing-Based Dual-Function Switch and Its Application in Solving Two Key Metabolic Engineering Problems. ACS Synth Biol, 2020. 9(2): p. 209-217. + </p> + <p> + 9.Gupta, A., et al., Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol, 2017. 35(3): p. 273-279. + </p> + <p> + 10.Jaishankar, J. and P. Srivastava, Strong synthetic stationary phase promoter-based gene expression system for Escherichia coli. Plasmid, 2020. 109: p. 102491. + </p> + <p> + 11.Talukder, A.A., et al., RpoS-dependent regulation of genes expressed at late stationary phase in Escherichia coli. FEBS Lett, 1996. 386(2-3): p. 177-80. + </p> + <p> + 12.Gao, Y., et al., Inducible cell lysis systems in microbial production of bio-based chemicals. Appl Microbiol Biotechnol, 2013. 97(16): p. 7121-9. + </p> + <p> + 13.Barrell, B.G., G.M. Air, and C.A. Hutchison, 3rd, Overlapping genes in bacteriophage phiX174. Nature, 1976. 264(5581): p. 34-41. + </p> + <p> + 14.Borrero-de Acuña, J.M., et al., A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep, 2017. 7(1): p. 4373. + </p> + <p> + 14.Borrero-de Acuña, J.M., et al., A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep, 2017. 7(1): p. 4373. </p> <br /> </div>