From ced4b2c8275d3b97194ec448002c896aab62ee9a Mon Sep 17 00:00:00 2001 From: Ruby Chang <ruby931109@gmail.com> Date: Wed, 28 Sep 2022 22:15:22 +0800 Subject: [PATCH] modified: static/style.css modified: wiki/pages/attributions.html modified: wiki/pages/engineering.html modified: wiki/pages/part-collection.html modified: wiki/pages/team.html --- static/style.css | 101 +++- wiki/pages/attributions.html | 300 +++++++++-- wiki/pages/engineering.html | 4 +- wiki/pages/part-collection.html | 881 ++------------------------------ wiki/pages/team.html | 41 +- 5 files changed, 432 insertions(+), 895 deletions(-) diff --git a/static/style.css b/static/style.css index 43cd9b3..0cfedb8 100644 --- a/static/style.css +++ b/static/style.css @@ -650,11 +650,32 @@ html { background-color: whitesmoke; } .temp_pic_advisor { - width: 60%; - height: 60%; + width: 40%; + height: 40%; + border-radius: 50%; + background-color: whitesmoke; +} +.team_advisor_photo_wrap { + width: 80%; + height: 100%; border-radius: 50%; background-color: whitesmoke; } +.advisor_photo { + display: flex; + flex-direction: column; + align-items: center; + justify-content: center; +} +.advisor_image_wrap { + display: flex; + width: 85%; + align-self: center; + flex-direction: row; + margin-bottom: 50px; + justify-content: space-between; + align-items: center; +} .teamtitleimage { margin-top: 30px; margin-bottom: 30px; @@ -719,6 +740,12 @@ html { border-radius: 50%; background-color: #f6f6f6; } +.advisor_name { + color: #082076; + font-size: 30px; + text-align: center; + margin-top: 50px; +} .image_herosection { /* height: 500px; */ overflow: hidden; @@ -810,6 +837,7 @@ html { align-items: center; justify-content: center; width: 100%; + margin-bottom: 50px; } .banner_header { @@ -869,6 +897,9 @@ html { .herosectionteam { height: 55vw; } + .advisor_image_wrap { + width: 90%; + } .shadow { height: 100%; } @@ -876,10 +907,7 @@ html { margin-top: -20%; } .temp_pic_advisor { - width: 90%; - height: 90%; - border-radius: 50%; - background-color: whitesmoke; + display: none; } .teamtitleword { font-size: 60px; @@ -938,11 +966,35 @@ html { .attribubtion_wrap { width: 80%; margin-top: 200px; + margin-bottom: 200px; display: flex; flex-direction: column; align-items: center; justify-content: center; } +.jobtitleswrap { + display: flex; + flex-direction: row; +} +.job_title { + color: #91cdd1; + font-size: 28px; +} +.team_membername { + color: #676769; + font-size: 28px; + margin-left: 20px; +} +.team_memberwrap { + margin-top: 15px; + align-self: flex-start; + margin-bottom: 15px; +} +.workdistribution { + font-size: 20px; + margin-top: 20px; + color: #2e2e30; +} .teamtitleimage { width: 40%; } @@ -1088,6 +1140,13 @@ html { height: 1px; background-color: white; } +.team_divider { + width: 100%; + border: none; + outline: none; + height: 1px; + background-color: gray; +} #yellowoutreachparts { background-color: #f1d48d; } @@ -1227,7 +1286,7 @@ html { position: absolute; top: 0; padding: 30px; - margin-top: 80px; + padding-top: 80px; height: 100vh; right: 0px; overflow-y: auto; @@ -1407,7 +1466,6 @@ html { position: fixed; top: 80px; left: 0; - z-index: 30000; height: 4px; width: var(--progress); background-color: #082076; @@ -1544,6 +1602,9 @@ html { .chart_image { height: 200px; } +.chart_part_image { + height: 100px; +} .chart_contents { background-color: white; @@ -1619,6 +1680,14 @@ html { grid-template-rows: repeat(6, 1fr); grid-template-columns: repeat(4, 1fr); } +#three_five { + grid-template-rows: repeat(5, 1fr); + grid-template-columns: repeat(3, 1fr); +} +#three_two { + grid-template-rows: repeat(2, 1fr); + grid-template-columns: repeat(3, 1fr); +} #five_eight { grid-template-rows: repeat(8, 1fr); grid-template-columns: repeat(5, 1fr); @@ -1698,10 +1767,9 @@ html { margin-bottom: 50px; } #safetyimage { - margin: 0; + margin: 0; height: 300px; - margin-right: 10px; - margin-left: 10px; + margin: 10px; } .constant_width { height: 280px; @@ -1751,6 +1819,9 @@ html { font-size: 17px; margin-top: 43px; } +.info_contents_parts { + font-size: 17px; +} .workscited { width: 100%; font-size: 25px; @@ -1793,13 +1864,14 @@ html { height: 200px; } .constant_width { - height: 150px; + width: 100%; + height: auto; } } @media screen and (max-width: 1130px) { #experimentalcontents { width: 100%; - padding: 150px; + padding: 75px; margin: 0; } .search_index { @@ -1807,6 +1879,9 @@ html { width: 0; margin: 0; } + .safety_image_wrap { + flex-direction: column; + } } /*contents*/ diff --git a/wiki/pages/attributions.html b/wiki/pages/attributions.html index a03e9cd..c9e42b8 100644 --- a/wiki/pages/attributions.html +++ b/wiki/pages/attributions.html @@ -1,44 +1,269 @@ {% extends "layout.html" %} {% block page_content %} -<body class="body"> - <div class="wrap"> - <div class="loadingwrap"> - <img - class="loadinggif" - src="https://static.igem.wiki/teams/4271/wiki/logo.gif" - /> +<div class="wrap"> + <div class="loadingwrap"> + <img + class="loadinggif" + src="https://static.igem.wiki/teams/4271/wiki/logo.gif" + /> + <img + class="loadingwords" + src="https://static.igem.wiki/teams/4271/wiki/loading2-0.gif" + /> + </div> + <div class="bannerwrap"> + <img + class="bannerimg" + src="https://static.igem.wiki/teams/4271/wiki/attribution-banner.png" + /> + </div> + <div class="attribubtion_wrap"> + <div class="attribution_specialthanks"> <img - class="loadingwords" - src="https://static.igem.wiki/teams/4271/wiki/loading2-0.gif" + class="specialthanks" + src="https://static.igem.wiki/teams/4271/wiki/attribution-specialthanks.png" /> + <div class="specialthanks_words"> + Eutro in Vitro is delighted to announce that after months of + brainstorming, research, and experiments, we have successfully developed + a ground-breaking and effective solution to eutrophication. However, we + could not possibly accomplish so much in such a short period of time + without the help of many, including Dr. Chi-Yu Chen, Prof. Po-Husn + Huang, Institute of Clinical Medicine, NYCU, which provided lab + supervision and lab equipment, BIOTOOLS and Abreal Biotech, which + provided material and chemicals for experimental uses. Words are not + enough to express our appreciation to everyone that accompanied us on + this journey. Apart from that, we also want to express our gratitude to + the welcoming scientific community that aided us in numerous + disciplines. + </div> </div> - <div class="bannerwrap"> - <img - class="bannerimg" - src="https://static.igem.wiki/teams/4271/wiki/attribution-banner.png" - /> + + <b class="title_team">Work Distribution</b> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Julie Lin</b> + <div class="team_membername">Wet lab</div> + </div> + <div class="workdistribution"> + Experimental Design, Experimentation, Figures, OPH proof of concept + (data analysis & documentation) + </div> </div> - <div class="attribubtion_wrap"> - <div class="attribution_specialthanks"> - <img - class="specialthanks" - src="https://static.igem.wiki/teams/4271/wiki/attribution-specialthanks.png" - /> - <div class="specialthanks_words"> - Eutro in Vitro is delighted to announce that after months of - brainstorming, research, and experiments, we have successfully - developed a ground-breaking and effective solution to eutrophication. - However, we could not possibly accomplish so much in such a short - period of time without the help of many, including NYCU laboratory, - which provided lab supervision and lab equipemnt, BIOTOOLS and Abreal - Biotech, which provided lab equipment and chemicals for experimental - uses. Words are not enough to express our appreciation to everyone - that accompanied us on this journey. Apart from that, we also want to - express our gratitude to the welcoming scientific community that aided - us in numerous disciplines. - </div> + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Ryan Hsu</b> + <div class="team_membername">Wet lab</div> </div> + <div class="workdistribution"> + Experimental Design, Experimentation, Safety & security documentation, + Proposed Implementation Design + </div> + </div> + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Penny Ho</b> + <div class="team_membername">Wet lab</div> + </div> + <div class="workdistribution"> + Experimental Design, Experimentation, Figures, Engineering Success + Documentation + </div> + </div> - <b class="title_team">Outreach</b> + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Kathryn Tsai</b> + <div class="team_membername">Wet lab</div> + </div> + <div class="workdistribution"> + Experimental Design, Experimentation, Figures, AsPhoU proof of concept + (data analysis & documentation) + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Ethan Ho</b> + <div class="team_membername">Wet lab</div> + </div> + <div class="workdistribution"> + Experimental Design, Experimentation, Parts Documentation, Parts + Registry, Photography + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Abraham Lin</b> + <div class="team_membername">Dry lab</div> + </div> + <div class="workdistribution"> + Model, implementation (Design), Hardware (3D printing) + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Jessie Chen</b> + <div class="team_membername">Dry lab</div> + </div> + <div class="workdistribution"> + Implementation (Design), Hardware documentation, Prototype crafting + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Joseph Haung</b> + <div class="team_membername">Dry lab</div> + </div> + <div class="workdistribution">Implementation (Arduino)</div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Carol Kao</b> + <div class="team_membername">Human practice</div> + </div> + <div class="workdistribution"> + Interview (questions design, outreach), Wiki website (design), Education + (lecture), Virtual meet-up + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Una Chuang</b> + <div class="team_membername">Human practice</div> + </div> + <div class="workdistribution"> + Interview (questions design, outreach), Education (lecture), Virtual + meet-up + </div> + </div> + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Alyssa Yang</b> + <div class="team_membername">Human practice</div> + </div> + <div class="workdistribution"> + Education (planning, lecture), Media Outreach, Podcast(brainstorm), + Virtual meet-up, Interview + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Vincent Chiu</b> + <div class="team_membername">Human practice</div> + </div> + <div class="workdistribution"> + Education (lecture), Podcast (brainstorm, edit & update), Collaboration + (planning, contacting), Interview + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Phoebe Lee</b> + <div class="team_membername">Human practice</div> + </div> + <div class="workdistribution"> + Education (lecture), social media, Virtual meet-up, Interview + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Ruby Chang</b> + <div class="team_membername">Wiki</div> + </div> + <div class="workdistribution"> + Wiki website design, Wiki website coding + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Kyle Wang</b> + <div class="team_membername">Wiki</div> + </div> + <div class="workdistribution"> + Software design, Software coding, Wiki website coding + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">I-Fan Tu</b> + <div class="team_membername">PI</div> + </div> + <div class="workdistribution"> + Synbio courses, lab training, content revise and editting, lab + supervision + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Yu Chuan Lee</b> + <div class="team_membername">Instructor</div> + </div> + <div class="workdistribution"> + Advisory, content revise and editting, lab supervision + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Ting-Yi Wu</b> + <div class="team_membername">Instructor</div> + </div> + <div class="workdistribution"> + Advisory, content editting + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Cheng-Ju Lu</b> + <div class="team_membername">Instructor</div> + </div> + <div class="workdistribution"> + Modelling courses, Advisory, content revise and editting + </div> + </div> + + <hr class="team_divider" /> + <div class="team_memberwrap"> + <div class="jobtitleswrap"> + <b class="job_title">Wan-Ju Chen</b> + <div class="team_membername">Instructor</div> + </div> + <div class="workdistribution"> + Advisory + </div> + </div> + + <!-- <b class="title_team">Outreach</b> <div class="outreachwrap"> <div class="outreach_wrap"> <div class="outreachparts" id="yellowoutreachparts"> @@ -51,7 +276,7 @@ <hr class="outreach_divider" /> <div class="outreach_content">Contents</div> </div> - + <div class="outreachparts" id="greenoutreachparts"> <div class="outreach_name">NAME</div> <hr class="outreach_divider" /> @@ -87,9 +312,8 @@ <div class="sponsors_logo"></div> <div class="sponsors_logo"></div> </div> - </div> - </div> + </div> --> </div> -</body> +</div> {% endblock %} diff --git a/wiki/pages/engineering.html b/wiki/pages/engineering.html index cd22e11..81ab84b 100644 --- a/wiki/pages/engineering.html +++ b/wiki/pages/engineering.html @@ -932,7 +932,7 @@ class="content_link" href="{{ url_for('pages', page='implementation') }}" > - Implementation page. + Implementation page </a> . </div> @@ -957,7 +957,7 @@ and generate false signals for detection. For more information on our team’s partnership with NYCU_Taipei, please visit our <a class="content_link" href="{{ url_for('pages', page='partnership') }}"> - Partnership page. + Partnership page </a> . </div> diff --git a/wiki/pages/part-collection.html b/wiki/pages/part-collection.html index faaf2e3..576bffd 100644 --- a/wiki/pages/part-collection.html +++ b/wiki/pages/part-collection.html @@ -26,915 +26,122 @@ <div class="wiki_contents"> <div class="search_index_wrap"> <div class="search_index"> - <div class="search_subindex" onclick="movetoone()">Biosensor Design</div> + <div class="search_subindex" onclick="movetoone()">Basic Parts</div> <div class="search_subindex" onclick="movetotwo()"> - Biosensor Function - </div> - <div class="search_subindex" onclick="movetothree()"> - Experimental Methods - </div> - <div class="search_subindex" onclick="movetofour()"> - Experimental Results, Learning, and Redesign - </div> - <div class="search_subindex" onclick="movetofive()"> - Bacterial System for Cellular Inorganic Phosphate (Pi) Concentration - Regulation - </div> - <div class="search_subindex" onclick="movetosix()"> - Theoretical Function of AsPhoU - </div> - <div class="search_subindex" onclick="movetoseven()"> - Preliminary Experiment: 5-Bromo-4-chloro-3-indolyl phosphate (XP) - Coloration Test of Pho Regulon - </div> - <div class="search_subindex" onclick="movetoeight()"> - Malachite Green Coloration - </div> - <div class="search_subindex" onclick="movetonine()"> - Theoretical Function of our Assay Kit - </div> - <div class="search_subindex" onclick="movetoten()"> - Future plan + Composite Parts </div> </div> </div> <div class="herowrap" id="experimentalcontents"> <div id="progress-bar"></div> <b class="heading1" id="greenheading1"> - The Paraoxon Hydrolysis Detection Experiment + Parts Page </b> <div class="index_container"></div> - - <div class="info_contents" id="greencontents"> - Insecticides are one of the most significant sources of organic phosphate - pollution in water bodies. As the active metabolite of organophosphate - insecticide, paraoxon could result in neurotoxic poisoning in animals. Our - implementation hardware included a filtering device that contains bacteria - engineered to overexpress the - <em>oph</em> - gene, which encodes the enzyme organophosphate hydrolase (OPH). - </div> - <div class="info_contents" id="greencontents"> - In order to prove the ability of OPH to hydrolyze and, thus, detoxify - paraoxon, we utilize the pNP sensor as the specified switch. - </div> - <div class="index_container" id="one"></div> - <div class="heading2" id="greenheading2">Biosensor Design</div> - - <div class="info_contents" id="greencontents"> - To determine the effect of the paraoxon hydrolysis reaction, we detected - the amount of the reaction’s product, p-nitrophenol (pNP) with the pNP - sensor. We designed the biosensor by transforming the pNP sensor plasmid - and enzyme plasmid into the biological system - <em>E. coli</em> - BL21(DE3). The enzyme plasmid contains the original lac operon and the - subcloned - <em>oph</em> - gene. The sensor plasmid contains the subcloned GFP (green fluorescent - protein) gene and pNP mut1-1 gene, which encodes for the transcription - factor protein to enhance downstream GFP expression when induced by pNP - (Jha et al. 8495). - </div> - <div class="index_container" id="two"></div> - <div class="heading2" id="greenheading2">Biosensor Function</div> - <div class="info_contents" id="greencontents"> - The biosensor functions fully under exposure to both IPTG and paraoxon in - the environment. With the induction of IPTG, the repressor protein is - prevented from binding to the gene, allowing the transcription of the OPH - protein. OPH then hydrolyses paraoxon, producing p-nitrophenol (pNP), - which would bind to the activator protein pNP mut1-1, leading to the - increased transcription of the GFP protein and, thus, causing the emission - of green fluorescence (Jha et al. 8495). By measuring the intensity of GFP - fluorescence, we can detect the detoxification of paraoxon and the level - of inorganic phosphate production. - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/paraoxon-biosensor.png " - /> - <div class="image_description" id="greencontents"> - Fig. 1 The function of the whole-cell biosensor - </div> - <img - class="constant_height" - id="lower_height" - src="https://static.igem.wiki/teams/4271/wiki/biosensor-construct.png" - /> - <div class="image_description" id="greencontents"> - Fig. 2 The construct and function of the pNP sensor plasmid - </div> - <div class="index_container" id="three"></div> - <div class="heading2" id="greenheading2">Experimental Methods</div> - <em class="info_contents_italics" id="greencontents"> - Experimental work 1: pNP Titration - </em> - <div class="info_contents" id="greencontents"> - To determine the standard curves for the positive correlation between pNP - and GFP fluorescence intensity for further experiments, we titrated E. - coli BL21 (DE3) carrying pNP sensor with varying concentrations of pNP. - The concentrations and the resulting fluorescence intensity are mapped out - as the standard curve for experimental references. - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental work 2: Paraoxon Hydrolysis - </em> - <div class="info_contents" id="greencontents"> - Experimental work 2: Paraoxon Hydrolysis - <em>E. coli</em> - BL21 (DE3) carrying pET22b::OPH in presence of IPTG is treated with - paraoxon. The rate of paraoxon hydrolysis by OPH can be calculated from - the pNP production to prove the target protein's effectiveness. - </div> - - <div class="index_container" id="four"></div> <div class="heading2" id="greenheading2"> - Experimental Results, Learning, and Redesign - </div> - <div class="info_contents" id="greencontents"> - The data of the preliminary experiment, which aimed to test the - transcriptional factor induced by pNP, showed no significance. The results - were inconsistent with the research paper on which the experimental design - was based. For more information on the engineering of the pNP sensor gene, - please visit the - <a class="content_link" href="{{ url_for('pages', page='engineering') }}"> - Engineering Success page - </a> - . - </div> - <div class="chart" id="two_five"> - <b class="chart_header" id="greencontents"> - Groups - </b> - <b class="chart_header" id="greencontents"> - Fluorescence - </b> - <div class="chart_contents" id="greencontents">DH5alpha</div> - <div class="chart_contents" id="greencontents">24870</div> - <div class="chart_contents" id="greencontents">DH5alpha + pNP</div> - <div class="chart_contents" id="greencontents">20650</div> - <div class="chart_contents" id="greencontents">DH5alpha-sensor</div> - <div class="chart_contents" id="greencontents">46867</div> - <div class="chart_contents" id="greencontents">DH5alpha-sensor + pNP</div> - <div class="chart_contents" id="greencontents">50783</div> - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/fluorescent-protein-expression-level.png" - /> - <div class="image_description" id="greencontents"> - Fig. 3 Green fluorescence detection in - <em>E. coli</em> - BL21 (DE3) and pNP sensor cell in absence and presence of pNP. + Parts for Eutrophic Water Purification (OPH and AsPhoU) </div> - <div class="info_contents" id="greencontents"> - Therefore, we redesigned a more direct method to test the degradation of - paraoxon by OPH. The experimental design was based on the hypothesis that - paraoxon (transparent) would be hydrolyzed to produce diethyl phosphate - (transparent) and pNP (yellow, absorbance peak at 410 nm by - spectrophotometry). We detected the production level of pNP with - spectrophotometry to test the percentage of paraoxon degradation by OPH - that could hydrolyze in a certain period of time. We performed two - experimental works: the amount of pNP detection at the various time points - (pNP conc. v.s. Time) and in the presence of different IPTG concentrations - at a fixed time (pNP conc. v.s. IPTG conc.), respectively, to determine - the optimal factors of OPH degradation activity. - </div> - <em class="info_contents_italics" id="greencontents"> - Preliminary Experiment + <div class="index_container" id="one"></div> + <em class="info_contents_parts" id="greencontents"> + Basic Parts </em> - <div class="info_contents" id="greencontents"> - To ensure the function of OPH before introducing other variables and - performing complete experiments with all control groups, we designed and - conducted a preliminary experiment. 3 groups of BL21 (DE3) bacteria and 3 - groups of BL21 (DE3) bacteria engineered with OPH gene are cultured with - medium only as the negative control, paraoxon, and pNP, respectively. The - engineered bacteria are then induced by IPTG for protein expression. To - test if the products of the hydrolysis reaction would be released into the - environment, we measured the samples from the bacterial suspension and - supernatant after centrifugation. We then deducted the background data - (negative control) from the absorbance and divided the result by the - optical density of the bacteria to test the level of pNP produced (and, - therefore, the paraoxon degraded) per 10^7 CFU of bacteria added, - indicating the ability of paraoxon degradation by each bacteria. - </div> - <div class="chart" id="four_seven"> + <div class="chart" id="three_five"> <b class="chart_header" id="greencontents"> - Groups + Part Number </b> <b class="chart_header" id="greencontents"> - (Absorbance at 410nm - background data) / OD600 + Description </b> <b class="chart_header" id="greencontents"> - (Supernatant Absorbance at 410nm - background data) / OD600 + Diagram </b> - <b class="chart_header" id="greencontents"></b> - <div class="chart_contents" id="greencontents"> - 1. BL2(DE3) (negative control) - </div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents">0</div> <div class="chart_contents" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/1.jpg " - /> - </div> - <div class="chart_contents_highlight" id="greencontents"> - 2. BL2(DE3) +paraoxon (experimental) - </div> - <div class="chart_contents_highlight" id="greencontents"> - 0.2323266987 - </div> - <div class="chart_contents_highlight" id="greencontents"> - 0.3905284832 - </div> - <div class="chart_contents_highlight" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/3.jpg " - /> + BBa_K4271000 </div> <div class="chart_contents" id="greencontents"> - 3. BL2(DE3) +pNP (positive control) + Organophosphate Hydrolase + his-tag (OPH) </div> - <div class="chart_contents" id="greencontents">8.905950096</div> - <div class="chart_contents" id="greencontents">9.966890595</div> <div class="chart_contents" id="greencontents"> <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/5.jpg " + class="chart_part_image" + src="https://static.igem.wiki/teams/4271/wiki/oph-his-tag.png" /> </div> <div class="chart_contents" id="greencontents"> - 4. PET::OPH +IPTG induction (negative control) - </div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/2.jpg " - /> - </div> - <div class="chart_contents_highlight" id="greencontents"> - 5. PET::OPH +paraoxon +IPTG induction (experimental) - </div> - <div class="chart_contents_highlight" id="greencontents">6.720481928</div> - <div class="chart_contents_highlight" id="greencontents">6.916144578</div> - <div class="chart_contents_highlight" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/4.jpg " - /> + BBa_K4271002 </div> <div class="chart_contents" id="greencontents"> - 6. PET::OPH +pNP +IPTG induction (positive control) + Antisense-PhoU (AsPhoU) </div> - <div class="chart_contents" id="greencontents">11.83912249</div> - <div class="chart_contents" id="greencontents">12.51005484</div> <div class="chart_contents" id="greencontents"> <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/6.jpg " + class="chart_part_image" + src="https://static.igem.wiki/teams/4271/wiki/asphou.png" /> </div> - </div> - <em class="info_contents_italics" id="greencontents"> - Preliminary Experiment Results and Interpretation - </em> - - <div class="info_contents" id="greencontents"> - The absorbance of the paraoxon solution increased 6.720481928 A.U. - (highlighted in green) after the reaction with BL21 (DE3) engineered with - the - <em>oph</em> - gene, whereas that of the paraoxon solution reacted with BL21(DE3) only - increased 0.2323266987 A.U. (highlighted in green). The significant - increase in the production of pNP proves the ability of our target protein - OPH to hydrolyze paraoxon. Based on the successful results of our - preliminary experiment, we further designed experimental works 1 and 2 to - investigate the optimal reaction time and IPTG induction level, - respectively, that would allow OPH to reach its highest enzyme expression - and activity. - </div> - <em class="info_contents_italics" id="greencontents"> - Standard Curve Preparation - </em> - <div class="info_contents" id="greencontents"> - After observing that reaction with bacteria alters the absorbance of pNP - solution significantly, we constructed a standard curve that measures the - absorbance at 410 nm versus the concentration of pNP solution cultured - with 0.6 O.D. bacteria for 6 hours. - </div> - <img - class="constant_height" - id="lower_height" - src="https://static.igem.wiki/teams/4271/wiki/pnp-bacteria-standard-curve-6hr.png -" - /> - <div class="image_description" id="greencontents"> - Fig. 4 Standard Curve (410 absorbances v.s. pNP concentration) - </div> - - <em class="info_contents_italics" id="greencontents"> - Experimental Work 1: pNP concentration v.s. Time - </em> - <div class="info_contents" id="greencontents"> - We aimed to test the optimal reaction time for OPH enzyme activity with - experimental work 1. All solutions are prepared with 500 μM PXN/pNP - chemical, 100 μM IPTG, and 0.6 O.D . bacteria. The experimental groups are - designed as below: - </div> - <div class="chart" id="four_seven"> - <b class="chart_header" id="greencontents"> - Groups - </b> - <b class="chart_header" id="greencontents"> - Bacteria Used - </b> - <b class="chart_header" id="greencontents"> - Substrates - </b> - <b class="chart_header" id="greencontents"> - IPTG Induction - </b> - <div class="chart_contents" id="greencontents">1 (positive control)</div> - <div class="chart_contents_span" id="greencontents">BL21(DE3)</div> - <div class="chart_contents" id="greencontents">pNP</div> - <div class="chart_contents" id="greencontents">induced</div> - <div class="chart_contents" id="greencontents">2 (negative control)</div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">uninduced</div> - <div class="chart_contents" id="greencontents"> - 3 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">induced</div> - <div class="chart_contents" id="greencontents">4 (positive control)</div> - <div class="chart_contents_span_second" id="greencontents"> - BL21(DE3) engineered with OPH - </div> - <div class="chart_contents" id="greencontents">pNP</div> - <div class="chart_contents" id="greencontents">induced</div> - <div class="chart_contents" id="greencontents">5 (negative control)</div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">uninduced</div> - <div class="chart_contents" id="greencontents"> - 6 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">induced</div> - </div> - <div class="info_contents" id="greencontents"> - The absorbance at the wavelength of 410 nm and 600 nm in each group was - measured after 1 hr, 2 hrs, 3 hrs, 4 hrs, 5 hrs, 6 hrs, and 24 hrs of - reaction to test the pNP production level and the concentration of - bacteria over time. - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental 1 Results and Interpretation - </em> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/time-v-s-pnp.png - " - /> - - <div class="image_description" id="greencontents"> - Fig. 5 Time (hr) v.s. pNP concentration (μM) - </div> - - <div class="info_contents" id="greencontents"> - The result of experimental work 1 shows that pNP concentration increases - rapidly in the first 5 hours and grows steadily afterward. - </div> - - <em class="info_contents_italics" id="greencontents"> - Experimental Work 2: pNP concentration v.s. IPTG concentration - </em> - - <div class="info_contents" id="greencontents"> - We aimed to determine the optimal concentration of IPTG induction for OPH - enzyme expression with experimental work 2. Solutions are prepared with - 500 μM PXN/pNP chemical, 0.6 O.D. bacteria, and various concentrations of - IPTG. The experimental groups are designed as below: - </div> - - <div class="chart" id="four_seven"> - <b class="chart_header" id="greencontents"> - Groups - </b> - <b class="chart_header" id="greencontents"> - Bacteria Used - </b> - <b class="chart_header" id="greencontents"> - Substrates - </b> - <b class="chart_header" id="greencontents"> - IPTG Induction (μM) - </b> - <div class="chart_contents" id="greencontents">1 (negative control)</div> - <div class="chart_contents_span_third" id="greencontents">BL21(DE3)</div> - <div class="chart_contents" id="greencontents">-</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents">2 (positive control)</div> - <div class="chart_contents" id="greencontents">pNP</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents"> - 3 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents">4 (negative control)</div> - <div class="chart_contents_span_four" id="greencontents"> - BL21(DE3) engineered with OPH - </div> - <div class="chart_contents" id="greencontents">-</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents">5 (positive group)</div> - <div class="chart_contents" id="greencontents">pNP</div> - <div class="chart_contents" id="greencontents">0</div> - <div class="chart_contents" id="greencontents"> - 6 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">0</div> <div class="chart_contents" id="greencontents"> - 7 (experimental group) + BBa_K4271015 </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">2000</div> <div class="chart_contents" id="greencontents"> - 8 (experimental group) + pelB signal peptide </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">1000</div> <div class="chart_contents" id="greencontents"> - 9 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">500</div> - <div class="chart_contents" id="greencontents"> - 10 (experimental group) - </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">250</div> - <div class="chart_contents" id="greencontents"> - 11 (experimental group) + <img + class="chart_part_image" + src="https://static.igem.wiki/teams/4271/wiki/pelb-signal-peptide.png" + /> </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">125</div> <div class="chart_contents" id="greencontents"> - 12 (experimental group) + BBa_K4271016 </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">62.5</div> <div class="chart_contents" id="greencontents"> - 13 (experimental group) + AsPhoU RBS </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">31.25</div> <div class="chart_contents" id="greencontents"> - 14 (experimental group) + <img + class="chart_part_image" + src="https://static.igem.wiki/teams/4271/wiki/pelb-signal-peptide.png" + /> </div> - <div class="chart_contents" id="greencontents">PXN</div> - <div class="chart_contents" id="greencontents">15.625</div> - </div> - - <div class="info_contents" id="greencontents"> - The absorbance values at the wavelength of 410 nm and 600 nm were measured - after 6 hrs and 23 hrs of reaction to test the pNP production level and - the concentration of bacteria with increasing concentration of IPTG. - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental Work 2 Results and Interpretation - </em> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/iptg-v-s-pnp.png" - /> - - <div class="image_description" id="greencontents"> - Fig. 6 IPTG induction (μM) vs. pNP concentration after 23 hours (μM) - </div> - <div class="info_contents" id="greencontents"> - The results of experimental work 2 demonstrated that after 23 hours, the - experimental group induced by 250 μM IPTG reached the highest level of pNP - concentration, thus proving that 250 μM IPTG is the optimal induction for - the highest OPH protein expression. - </div> - - <b class="heading1" id="greenheading1"> - Inorganic Phosphate Detection Experiments - </b> - <div class="index_container"></div> - - <div class="info_contents" id="greencontents"> - Inorganic phosphate (Pi) accumulated in the sediments of aquatic - environments is the primary reason for eutrophication. In order to - decrease the amount of inorganic phosphate in water bodies, our team - implemented a device that contains specially engineered - <em>E. coli</em> - that expresses the RNA of antisense PhoU (AsPhoU) thus hindering the - expression of PhoU and enhancing phosphate transportation. Through our - engineering process, these bacterial bodies can absorb more Pi from the - environment. - </div> - - <div class="index_container" id="five"></div> - <div class="heading2" id="greenheading2"> - Bacterial System for Cellular Inorganic Phosphate (Pi) Concentration - Regulation - </div> - <div class="info_contents" id="greencontents"> - PstSCAB is a high-affinity phosphate transporter protein in - <em>E. coli</em> - . Pho regulon is a common bacterial regulatory system determining and - managing intracellular Pi concentration through the regulation of the - PstSCAB transporter protein. The regulon consists of a histidine kinase - sensor protein – PhoR – on the inner membrane and a response regulator – - PhoB – on the cytoplasmic side of the membrane of a prokaryotic cell. The - way PhoB regulates the simultaneous expression of PstSCAB and PhoA depends - on the process by which PhoU binds onto PhoR. PhoU, a metal-binding - protein, detects the intracellular concentration levels of Pi. When the - environment undergoes a decrease in Pi concentration, PhoU dissociates - from PhoR and the PstSCAB transporter. This, in turn, promotes the - transportation of Pi and increases PhoA expression, which absorbs more Pi - into the cell and enhances the phosphorylation of PhoB. On the other hand, - when the phosphate level is high, PhoU would be activated to block its - absorption, meaning that the transportation by the PstSCAB protein and the - expression of PhoA would be inhibited. - </div> - - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/pstscab.png " - /> - <div class="image_description" id="greencontents"> - Fig. 1 Phosphate limitation; PstSCAB active; PhoR kinase inactive (left) - and Phosphate sufficiency; PstSCAB inactive; PhoR kinase active (right) - (Devine) - </div> - - <div class="index_container" id="six"></div> - <div class="heading2" id="greenheading2"> - Theoretical Function of AsPhoU - </div> - <div class="info_contents" id="greencontents"> - A previously published paper demonstrates that PhoU knockout leads to a - halt - <em>E. coli</em> - growth (Haldimann). Therefore, we designed the mRNA for AsPhoU hindering - phoU expression to increase the amount of Pi that bacteria could - transport, thus lowering the concentration of Pi in aquatic environments. - AsPhoU cell expresses antisense PhoU RNA under arabinose-control promoter - (pBAD) and thus binds to the mRNA of PhoU, hindering ribosome binding to - decrease phoU translation. The inhibition of PhoU protein would allow the - PstSCAB transporter to be open for Pi transportation at all times, even - under the high concentration of phosphate in eutrophic water bodies. - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/phou.png" - /> - <div class="image_description" id="greencontents"> - Fig. 2 Normal PhoU protein function (left) and the inhibition of PhoU by - AsPhoU, as well as its downstream effects (right) - </div> - <div class="info_contents" id="greencontents"> - With the purpose of proving the effectiveness of our engineered - <em>E. coli</em> - in decreasing the concentration of inorganic phosphate (Pi) in the - environment, 5-Bromo-4-chloro-3-indolyl phosphate coloration and malachite - green coloration are used. - </div> - - <div class="index_container" id="seven"></div> - <div class="heading2" id="greenheading2"> - Preliminary Experiment: 5-Bromo-4-chloro-3-indolyl phosphate (XP) - Coloration Test of Pho Regulon </div> - <em class="info_contents_italics" id="greencontents"> - Experimental Design - </em> - <div class="info_contents" id="greencontents"> - To ensure the effectiveness and practicality of our aforementioned - experimental design, we conducted a preliminary experiment. - 5-Bromo-4-chloro-3-indolyl phosphate (XP) is a chromogenic substrate that - shows no color in its stable state. However, if XP is in contact with - PhoA, PhoA will hydrolyze XP, thus severing phosphate ions (a phosphate - monoester + water = 5,5′-dibromo-4,4′-dichloro-indigo + a phosphate ion), - and the remaining chemical will appear to be blue. Once an increase in the - concentration of Pi is detected, the expression of PhoA rises and turns - the XP solution blue. To test the function of our bacteria engineered with - AsPhoU, we placed it inside the XP chemical to determine the absorbance of - Pi by observing the color changes. - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental Results and Interpretation + <div class="index_container" id="two"></div> + <em class="info_contents_parts" id="greencontents"> + Composite Parts </em> - <div class="info_contents" id="greencontents"> - Our positive control group is - <em>E. coli</em> - DH5α in a low phosphate medium, which turns the XP solution blue, - reflecting low phosphate to induce PhoA expression. On the contrary, no - blue color was observed in a high phosphate medium. - </div> - <div class="chart" id="four_six"> + <div class="chart" id="three_two"> <b class="chart_header" id="greencontents"> - Groups + Part Number </b> <b class="chart_header" id="greencontents"> - Environmental condition + Description </b> <b class="chart_header" id="greencontents"> - Resulting coloration of - <em>E. coli</em> - colonies + Diagram </b> - <b class="chart_header" id="greencontents"></b> - <div class="chart_contents" id="greencontents"> - <em>E. coli</em> - DH5α - </div> - <div class="chart_contents" id="greencontents">Low phosphate</div> - <div class="chart_contents" id="greencontents">Blue</div> - <div class="chart_contents" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-low-p.png" - /> - </div> - <div class="chart_contents" id="greencontents"> - <em>E. coli</em> - DH5α (withAsPhoU) - </div> - <div class="chart_contents" id="greencontents"> - Low phosphate - </div> - <div class="chart_contents" id="greencontents"> - Blue - </div> - <div class="chart_contents" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-asphou-low-p.png" - /> - </div> <div class="chart_contents" id="greencontents"> - <em>E. coli</em> - DH5α (with AsPhoU) + arabinose + BBa_K4271001 </div> - <div class="chart_contents" id="greencontents">Low phosphate</div> - <div class="chart_contents" id="greencontents">Blue</div> <div class="chart_contents" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-asphou-arabinose-low-p.png" - /> + T7 Promoter + Lac operator + RBS + pelB + OPH + his-tag + T7 terminator </div> - <div class="chart_contents" id="greencontents"> - <em>E. coli</em> - DH5α - </div> - <div class="chart_contents" id="greencontents">High phosphate</div> - <div class="chart_contents" id="greencontents">Transparent</div> <div class="chart_contents" id="greencontents"> <img class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-high-p.png" + src="https://static.igem.wiki/teams/4271/wiki/linear-map-pet22boph.jpg" /> </div> <div class="chart_contents" id="greencontents"> - <em>E. coli</em> - DH5α (with AsPhoU) + BBa_K4271003 </div> <div class="chart_contents" id="greencontents"> - High phosphate + araBAD promoter + RBS + AsPhoU + T1 T2 terminator </div> - <div class="chart_contents" id="greencontents">Transparent</div> <div class="chart_contents" id="greencontents"> <img class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-asphou-high-p.png" + src="https://static.igem.wiki/teams/4271/wiki/asphou-linear-map.png" /> </div> - <div class="chart_contents_highlight" id="greencontents"> - <em>E. coli</em> - DH5α (with AsPhoU) + arabinose - </div> - <div class="chart_contents_highlight" id="greencontents"> - High phosphate - </div> - <div class="chart_contents_highlight" id="greencontents">Blue</div> - <div class="chart_contents_highlight" id="greencontents"> - <img - class="chart_image" - src="https://static.igem.wiki/teams/4271/wiki/e-coli-asphou-arabinose-high-p.png" - /> - </div> - </div> - <div class="info_contents" id="greencontents"> - After the addition of - <em>E. coli</em> - DH5α (with AsPhoU) with 0.2 % arabinose at a high phosphate concentration, - the XP solution turned blue, proving the expression of PhoA and, thus, the - transportation of Pi into the bacterial cells. - </div> - - <div class="index_container" id="eight"></div> - <div class="heading2" id="greenheading2">Malachite Green Coloration</div> - - <em class="info_contents_italics" id="greencontents"> - Experimental Design - </em> - - <div class="info_contents" id="greencontents"> - Once molybdate (MoOâ‚„â»Â²) comes into contact with phosphate (POâ‚„â»Â³), a - complex containing phosphomolybdic acid would usually form. This complex - interacts with malachite, forming a green chromogenic complex that remains - in its most stable phase in an acidic environment. The color formation - runs proportional to the increase of phosphate concentration. The shifts - in color could determine the absorbance at 620 nm by a spectrophotometer. - We would add the aforementioned chemical into our bacteria to interpret - the effectiveness of our engineering method. - </div> - <em class="info_contents_italics" id="greencontents"> - Standard Curve Preparation - </em> - - <div class="info_contents" id="greencontents"> - Our team constructed a standard curve that measures the absorbance at 620 - nm versus the concentration of phosphate solution in the presence of E. - coli of 0.1 O.D. - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/standard-curve.png " - /> - <div class="image_description" id="greencontents"> - Fig. 3 Standard Curve (​​620 nm absorbance vs phosphate conc.) - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental Work 1: Time versus Pi Concentration - </em> - <div class="info_contents" id="greencontents"> - We aimed to test the optimal time of our engineered - <em>E. coli</em> - functioning under different conditions. All simulated high phosphate - solutions are prepared with 2 mM of Kâ‚‚HPOâ‚„, 0.06% glucose, and MOPS - buffer; all simulated low phosphate solutions are prepared with 0.1 mM of - Kâ‚‚HPOâ‚„, 0.4% glucose, and MOPS buffer. - </div> - <div class="info_contents" id="greencontents"> - We incubated our engineered - <em>E. coli</em> - (cultured at 0.1 O.D.) under the same condition, added malachite and - molybdate into our - <em>E. coli</em> - colonies, and detected the absorbance at 600 and 620 nm, respectively, - reflecting cell density and inorganic phosphate (Pi) concentration at - different time points. Using the standard curve above, we translated the - detected data of absorbance at 620 nm into phosphate concentration in μM. - </div> - <em class="info_contents_italics" id="greencontents"> - Experimental Results and Interpretation - </em> - <div class="info_contents" id="greencontents"> - Experiments on the bacterial body containing AsPhoU in the presence or - absence of arabinose were conducted for the level of phosphate absorption. - The groups with arabinose induction clearly reported higher absorbed - phosphate concentrations as AsPhoU is expressed. More phosphate absorption - in presence of arabinose was observed compared to the absence of arabinose - in AsPhoU. The maximal amount of Pi absorption was 3.1 x 10-6 μM per CFU - (colony forming unit) for 1-hour culture, estimating 2.52 mM phosphate - absorption per OD. - </div> - <div class="info_contents" id="greencontents"> - The full set experimental bar graph (1, 2, 3 hrs) indicating efficiency - are illustrated below: - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/pi-content-per-cfu-versus-different-experimental-sets.png" - /> - <div class="image_description" id="greencontents"> - Fig. 4 Phosphate content per CFU versus different experimental sets - </div> - <b class="heading1" id="greenheading1"> - Polyphosphate (PolyP) Detection Experiments - </b> - <div class="index_container"></div> - - <div class="info_contents" id="greencontents"> - Concluding from the previous experiments, AsPhoU cell has proven its - effectiveness in absorbing a higher amount of Pi in the environment. While - acknowledging that, we simultaneously have to make sure that the absorbed - Pi constructively fixates into inorganic polyphosphate (polyP) so that it - remains inside the bacterial bodies. Henceforth our team utilized - Sigma-Aldrich’s PolyP assay kit, which helped in quantifying the amount of - PolyP in bacterial bodies. - </div> - - <div class="index_container" id="nine"></div> - <div class="heading2" id="greenheading2"> - Theoretical Function of our Assay Kit - </div> - <div class="info_contents" id="greencontents"> - PolyP reacts fully with the fluorescent dye provided by the assay kit, - forming a detectable complex. The fluorescence of the created complex is - then measured with a spectrophotometer at λ (excitation) = 415 nm and λ - (emission) = 550 nm. The amount of fluorescence detected runs proportional - to the concentration of PolyP in the sampled bacteria. - </div> - <em class="info_contents_italics" id="greencontents"> - Standard Curve Preparation - </em> - <div class="info_contents" id="greencontents"> - Our team constructed a standard curve with the diluted PolyP solution and - our assay buffer. The experimental groups are listed below: - </div> - <div class="chart" id="four_seven"> - <b class="chart_header" id="greencontents"> - Well - </b> - <b class="chart_header" id="greencontents"> - 10 uM Standard PolyP - </b> - <b class="chart_header" id="greencontents"> - PolyP Assay Buffer - </b> - <b class="chart_header" id="greencontents"> - PolyP (pmol/well) - </b> - <div class="chart_contents" id="greencontents">1</div> - <div class="chart_contents" id="greencontents">0 uL</div> - <div class="chart_contents" id="greencontents">50 uL</div> - <div class="chart_contents" id="greencontents">0</div> - - <div class="chart_contents" id="greencontents">2</div> - <div class="chart_contents" id="greencontents">5 uL</div> - <div class="chart_contents" id="greencontents">45 uL</div> - <div class="chart_contents" id="greencontents">50</div> - - <div class="chart_contents" id="greencontents">3</div> - <div class="chart_contents" id="greencontents">10 uL</div> - <div class="chart_contents" id="greencontents">40 uL</div> - <div class="chart_contents" id="greencontents">100</div> - - <div class="chart_contents" id="greencontents">4</div> - <div class="chart_contents" id="greencontents">14 uL</div> - <div class="chart_contents" id="greencontents">35 uL</div> - <div class="chart_contents" id="greencontents">150</div> - - <div class="chart_contents" id="greencontents">5</div> - <div class="chart_contents" id="greencontents">20 uL</div> - <div class="chart_contents" id="greencontents">30 uL</div> - <div class="chart_contents" id="greencontents">200</div> - - <div class="chart_contents" id="greencontents">6</div> - <div class="chart_contents" id="greencontents">25 uL</div> - <div class="chart_contents" id="greencontents">25 uL</div> - <div class="chart_contents" id="greencontents">250</div> - </div> - <img - class="constant_height" - src="https://static.igem.wiki/teams/4271/wiki/standard-curve-polyp-conc-vs-fluorescence-intensity.png" - /> - <div class="image_description" id="greencontents"> - Fig. 5 Standard Curve (PolyP conc. vs. fluorescence intensity) - </div> - - <div class="index_container" id="ten"></div> - <div class="heading2" id="greenheading2"> - Future plan - </div> - <div class="info_contents" id="greencontents"> - Owing to time constraints, we have not been able to test the ability of - AsPhoU for intracellular PolyP accumulation. Regardless, we would conduct - this experimental process in the future, with the hope of reiterating that - our proposed solution successfully operates. Moreover, we would subclone - oph and AsPhoU to pACYCDuet vector with p15A ori, compatible with PolyP - sensor carrying pMB ori to generate our PolyP sensor cell in this project. - </div> - <div class="workscited" id="greencontents">References</div> - <div class="info_contents" id="greencontents"> - Jha, Ramesh K., et al. “A Microbial Sensor for Organophosphate Hydrolysis - Exploiting an Engineered Specificity Switch in a Transcription Factor.†- Nucleic Acids Research, vol. 44, no. 17, 2016, pp. 8490–500. Crossref, - https://doi.org/10.1093/nar/gkw687. - </div> - <div class="info_contents" id="greencontents"> - Devine, Kevin M. “Activation of the PhoPR-Mediated Response to Phosphate - Limitation Is Regulated by Wall Teichoic Acid Metabolism in Bacillus - subtilis.†Frontiers in microbiology vol. 9 2678. 6 Nov. 2018, - doi:10.3389/fmicb.2018.02678 - </div> - <div class="info_contents" id="greencontents"> - Haldimann, A et al. “Use of New Methods for Construction of Tightly - Regulated Arabinose and Rhamnose Promoter Fusions in Studies of the - Escherichia coli Phosphate Regulon.†Journal of bacteriology vol. 180,5 - (1998): 1277-86. doi:10.1128/JB.180.5.1277-1286.1998 </div> </div> </div> diff --git a/wiki/pages/team.html b/wiki/pages/team.html index ff59d9f..e80bc5b 100644 --- a/wiki/pages/team.html +++ b/wiki/pages/team.html @@ -1,6 +1,5 @@ {% extends "layout.html" %} {% block page_content %} -<body class="body"> <div class="wrap"> <div class="loadingwrap"> <img class="loadinggif" src="https://static.igem.wiki/teams/4271/wiki/logo.gif"> @@ -12,10 +11,10 @@ </div> <div class="teamwrap"> - <b class="title_team">Team Advisors</b> + <b class="title_team">Team Instructor</b> <div class="advisor-wrap"> - <div class="temp_pic_advisor"> + <div class="temp_pic_advisor"> <img class="image_advisor" src="https://static.igem.wiki/teams/4271/wiki/advisor.png" @@ -26,9 +25,42 @@ <div class="description_advisor"> "Working with young scientists always generates unexpected, unpredictable and cool ideas. " </div> + </div> + </div> + + <b class="title_team">Team Advisors</b> + <div class="advisor_image_wrap"> + <div class="advisor_photo"> + <div class="team_advisor_photo_wrap"> + <img + class="image_advisor" + src="https://static.igem.wiki/teams/4271/wiki/advisor1.png" + /> + </div> + <div class="advisor_name">Jenner</div> + </div> + + <div class="advisor_photo"> + <div class="team_advisor_photo_wrap"> + <img + class="image_advisor" + src="https://static.igem.wiki/teams/4271/wiki/advisor2.png" + /> </div> + <div class="advisor_name">Danny</div> + </div> + <div class="advisor_photo"> + <div class="team_advisor_photo_wrap"> + <img + class="image_advisor" + src="https://static.igem.wiki/teams/4271/wiki/claire.png" + /> </div> - <b class="title_team">Team Members</b> + <div class="advisor_name">Claire</div> + </div> + + </div> + <b class="title_team">Team Members</b> <div class="team-wrap"> <div class="person"> <div class="temp_pic"> @@ -381,5 +413,4 @@ </div> </div> </div> -</body> {% endblock %} -- GitLab